MORPH. QIO
SMARTUNIFIER

SMARTUNIFIER User Manual
Release 1.2.0

Amorph Systems GmbH

ABOUT SMARTUNIFIER

1 About SMARTUNIFIER 2
1.1 Whatis SMARTUNIFIER @ it ittt et ie e e 2
1.2 Whatdoes SMARTUNIFIER dO 3
1.3 Important Use Cases with SMARTUNIFIER 4

1.3.1 Anything-To-Anywhere IT Interface 4
1.3.2 Reusable Interfaces and Interface Models 5
1.3.3 Integrate Legacy Equipment, 6
1.3.4 Implement Fab Communication Scenario 7
1.3.5 Provide Base for Remote Maintenance and Health Monitoring 8
1.3.6 MigratetoIndustry 4.0 L 9
1.3.7 Allow Unlimited Scalability 10
1.3.8 Enable Internet of Things 11
1.4 Connectivity Endpoints and Data Formats 12
1.4.1 Connectivity Endpoints / Communication Protocols 13
142 DataFormats e 15
1.5 Whathaschangedin 1.2.0 i i e 15
2 How to integrate with SMARTUNIFIER 17
2.1 Information Models e 17
2.1.1 What are Information Models 17
2.1.2 How to create a new Information Model 17
2.1.3 Node TyPesS . . v v v v i e e e e e e e e e e e e e e e e e e e 19
214 DataTypes. o v i e e e e e e e 25
2.2 Communication Channels 26
2.2.1 WhatareChannels 26
2.2.2 Howtocreateanew Channel 26
2.2.3 Channel Types and Configuration 28
2.3 MappIngS . ¢ v v v o e 46
2.3.1 Whatare Mappings v v v v v v v e e e e e e e e e e e e e e e e 46
2.3.2 Howtocreateanew Mapping« . it it 46
2.3.3 HowtocreateRules 48
2.4 Device TYPEeS v i v i e e e e e e e e e e e e e e e e 56
2.4.1 WhatareDevice TYPES v v v v v i i e e e e e e e e e e e e e e e 56
2.4.2 Howtocreateanew DeviceType 56
25 INStanCes e e e e e e e e e e 58

2.5.1 WhatareInstances v v i it e e e e e e e e 58

2.5.2 Howtocreateanew Instance, 58

3 Deployment 61
3.1 WhatisaDeployment i i v i it e e e e e e e e e e e e 61
3.2 DeployLocally e e e 62
3.3 Deploywith Docker i e 63
3.4 Deploywith AWS Fargate it i it ittt ittt e et ee e 65
3.4.1 PrerequiSiteS. . . v v v v v i e 65

3.4.2 Architecture o e e e e e e e e e e 69

3.4.3 Planning the Deploymentt ene... 71

3.4.4 Deployment Steps. v v v vttt e e e e e e e e e e e e e e e e e 72

3.5 How to deploy, run and operate a deployed Instance 75
3.5.1 HowtodeployanlInstance v v v v v v it v n e, 75

3.5.2 HowtorunanlInstance. 75

3.5.3 HowtostopanlInstance 75

3.5.4 How to delete a Deployment of an Instance 76

3.5.5 Howtoun-deployanlInstance 76

3.6 How to monitor adeployedInstance 76
4 Administration 78
4.1 Deployment Endpoints 0 i e e e e e e 78
4.1.1 What are Deployment Endpoints 78

4.1.2 Deployment Endpoints Types 78

4.2 User Management v v vt v vttt e e e e e e e e e e e e e e e e e 81
4.2.1 About User Management ¢ v v vt v vt vue .. 81

4.2.2 Addanew user v v i it i e e e e e e e e e e e e 81

423 Editauser i e e e e e e e e e e e e 83

4.2.4 DeleteaUSer o v v v v i it e e e e e e e e e e e e e e 85

5 Demonstration Scenarios 88
5.1 File-based data- CSVto REST-Server. v v v v v it i i e e, 88
S.IT OVEIVIEW . v v v i it e 88

5.1.2 Information Model e 89

5.1.3 Communication Channel 90

5.1.4 Mapping o i e e e e e e e e e e e e e 91

S.1.5 DeviceType o o i e e e e e e e e e e e 92

5.1.6 INStance i i e e e e e e e e e e e e e e e 93

5.1.7 Deployment e e e e 95

5.2 File-based data - Insert JSON data in SQL-Database 96
521 OVEIVIEW . . . vt i e et e e e e e e e e e e e e e e e e e e 96

5.2.2 PrerequiSite v i i i i e e e e e e e e e e e e e e e e e e 96

5.2.3 Information Model 96

5.2.4 Communication Channel 97

525 Mapping o i e e e e e e e e e e e e e 99

5.2.6 DeviceType o i i e e e e e e e e e 100

5.2.7 InStance e e e e e e e e e e e e e e e e e 100

5.2.8 Deployment e e e e e 101

5.3 File-based data - XML, Database, and MQTT 102

531 OVEIVIEW . . v v i i et e e e e e e e e e e e e e e e e e 102

5.3.2 PrerequiSites. v v v i i e e e e e e e e e e e e e e e e e 102

5.3.3 Information Model 103

5.3.4 Communication Channel 104

5.3.5 Mappings v i i e e e e e e e e e e e e e e e e e 107

53.6 Device TYPE . . . v v v i i e e e e e e e e e e e e e e e e e e 108

5.3.7 Instance e e e e e e e e e e 109

5.3.8 Deployment e e e e e e e e e 109

6 Getting Help 111
6.1 Troubleshooting i i e e e e e e 111
6.1.1 Instance works abnormally or hangs/crashes 111

6.1.2 Manager works abnormally or hangs/crashes 112

6.2 FAQ e e e e e 112

SMARTUNIFIER User Manual, Release 1.2.0

Integrate perfectly your
Production-IT using

/AMORPH.pro

SMARTUNIFIER

ABOUT SMARTUNIFIER 1

CHAPTER
ONE

ABOUT SMARTUNIFIER

You are new to SMARTUNIFIER?
* Learn about the SMARTUNIFIER integration platform.
* Learn about the connectivity use cases you can adress with SMARTUNIFIER.
* Check out the supported connectivity endpoints and data formats.

* Learn about changes.

1.1 What is SMARTUNIFIER

SMARTUNIFIER represents a powerful but very easy to use integration platform for interconnecting
all industrial devices and IT systems including equipment, peripheral devices, sensors/actors, MES,
ERP as well as cloud-based IT systems.

SMARTUNIFIER is the tool of choice for transforming data into real value and for providing seam-
less IT interconnectivity within production facilities.

SMARTUNIFIER User Manual, Release 1.2.0

EIN I D T T
) T T T T

MORPH.pro
SMARTUNIFIER

Information Models Enterprise Context

Smart Mappings

¢ ¢ ¢

- III'"ﬂ'III i
g = 12 =0

EQUIPMENT PERIPHERY DEVICES

1.2 What does SMARTUNIFIER do

* SMARTUNIFIER provides an easy way to collect data from any Data Source and is able to
transmit this data to any Data Target.

* Data Sources and Data Targets (commonly referred to as Communication Partners) in this
respect may be any piece of equipment, device or IT system, communicating typically via
cable or Wi-Fi and using a specific protocol like e.g., OPC-UA, file-based, database, message
bus.

1.2. What does SMARTUNIFIER do 3

SMARTUNIFIER User Manual, Release 1.2.0

* With SMARTUNIFIER several Communication Partners can be connected simultaneously.

* With SMARTUNIFIER it is possible to communicate unidirectional or bidirectional to each
Communication Partner. i.e., messages and events can be sent and received at the same time.

* SMARTUNIFIER is able to translate and transform data to any format and protocol that is re-
quired by a certain Data Target. This includes different pre-configured protocols and formats,
e.g., OPC-UA, file-based, database, message bus, Webservices and many direct PLC connec-
tions. In case a certain protocol or format is currently not available it can be easily added to
SMARTUNIFIER.

* By applying so called Information Models, SMARTUNIFIER enables the same view to data
regardless of the protocol or format being used to physically connect an equipment, device or
IT system.

* A big advantage of SMARTUNIFIER is, that in many cases there is no need for coding when
providing interfaces between different Communication Partners — providing a new interface
is just drag and drop of data objects between data source(s) and destination(s).

1.3 Important Use Cases with SMARTUNIFIER

SMARTUNIFIER enables an easy and very efficient realization of many use cases that are crucial
for gaining Industry 4.0 Excellence.

In the following subchapters some of the most important SMARTUNIFIER Use Cases are described.
These give a comprehensive overview of the advanced SMARTUNIFIER Features.

1.3.1 Anything-To-Anywhere IT Interface
Easy, fast and flexible bi-directional interconnection of multiple IT systems and equipment
within a production facility.

Interconnecting heterogeneous shop floor equipment and devices with IT systems and intercon-
necting different IT systems with each other is a central requirement for a successful transition to
modern Industry 4.0 IT landscapes.

SMARTUNIFIER offers the unique capability to easily interconnect equipment and devices by al-
lowing

* any number of parallel high-speed Communication Channels between equipment, devices
and IT systems

* high-speed translation between different communication protocols and formats by applying
configurable and reusable Information Models and Smart Mappings

* flexible integration of equipment periphery

* easy integration of enterprise-specific information (e.g., equipment -location/-name/-type/-
capabilities) via configurable Enterprise Context

 riskless simulation of interfaces and communication scenarios

1.3. Important Use Cases with SMARTUNIFIER 4

SMARTUNIFIER User Manual, Release 1.2.0

Results from renowned reference customers have shown that average equipment integration efforts
and cost can be reduced by up to 90% using the SMARTUNIFIER and its advanced technologies
to perform powerful IT integration by configuration instead of tedious interface programming.

Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol ...
Format 1 $ Format 2 Format 3 $ Format 4 $ Format ... $
IMORPH.pro
o “appings m
Protocol A Protocol B Protocol .. $
Format A Format B Format ...

(I

7 e
E= v L1

EQUIPMENT PERIPHERY

1.3.2 Reusable Interfaces and Interface Models

Reuse interface configurations multiple times with minimum effort.

When running an IT network with a higher number of installed SMARTUNIFIER Instances, all pre-
viously created interface configurations (Information Models and Smart Mappings) can be reused
easily and shared across the whole installation. This way similar equipment types are integrated
using the same connection and translation logic.

Changes and updates of interface configurations can be deployed from a centrally accessible Master
Repository, eliminating the need to touch and update each equipment or device individually

Summarized, SMARTUNIFIER allows a highly comfortable and effective management of very small
to very large IT communication environments, creating minimum overhead and letting you reach

1.3. Important Use Cases with SMARTUNIFIER 5

SMARTUNIFIER User Manual, Release 1.2.0

your main goal: Excellent Manufacturing with a full Industry 4.0 IT infrastructure.

-_

Master Repositor —
P Yy —

S—
Deployment

[
[.
Smart Mappings

Information Models
[\

AR foy AR

DATA LAKE

AAORPH, MAORPH MRP MR, AAORPH, MAORPH
UHFER S UNFER S TUNFER A TUNFER UHFER S UNFER

EQUIPMENT EQUIPMENT EQUIPMENT EQUIPMENT EQUIPMENT EQUIPMENT

1.3.3 Integrate Legacy Equipment

Fast adaptation of legacy communication protocols and formats to modern enterprise stan-

dards.
By applying SMARTUNIFIER configurable protocol translation (Smart Mappings), modern commu-

nication standards like OPC-UA or XML over message bus are fully supported.

SMARTUNIFIER allows a really smooth migration from existing communication protocols and for-
mats (e.g., between existing equipment and MES) to new Industry 4.0 standards.

This unique capability of SMARTUNIFIER is realized by simply using existing communication chan-
nels simultaneously with newly introduced channels. When finishing the migration, the old chan-

nels can be switched off without any risk.

1.3. Important Use Cases with SMARTUNIFIER

SMARTUNIFIER User Manual, Release 1.2.0

Modern Communication Protocols $ 1 $ 2 $ 3 $ 4 $ —

MORPH.pro
SMARTUNIFIER

Information Models Enterprise Context

S “appings

Legacy Communication Protocols $ $ $

LEGACY EQUIPMENT PERIPHERY DEVICES

1.3.4 Implement Fab Communication Scenario

Easily implement complete fab communication sequences that cover multiple steps.

With SMARTUNIFIER it is not only possible to give access to simple equipment or device data and
to provide ,,some data to MES and Cloud“, but also with SMARTUNIFIER complete communication
scenarios between equipment to upper-level IT systems can be easily implemented.

The communication scenarios can cover all steps from identification, validation, order start as well
as sending results and process data from equipment to MES or Cloud. Of course it is also possible
to provide any parameter data (recipes) from MES or SCADA to equipment.

1.3. Important Use Cases with SMARTUNIFIER 7

SMARTUNIFIER User Manual, Release 1.2.0

1. 1D 2. RELEASE 3. START 4. FINISH 5. RESULTING 5. RESULTING 6. DETAILED
ORDER ORDER ORDER QUALITY QUALITY PROCESS
DATA DATA DATA
MORPH.pro

Information Models Enterprise Context

1.1D 2. RELEASE 3. START 4. FINISH 5. RESULTING 6. DETAILED
ORDER ORDER ORDER QUALITY PROCESS
DATA DATA

ID-READER

1.3.5 Provide Base for Remote Maintenance and Health Monitoring

Establish new services and business models by giving secured multi-channel access to equip-
ment and device data in real-time.

Production equipment can be integrated with SMARTUNIFIER to provide direct access for equip-
ment suppliers or maintenance service providers to relevant equipment data (e.g., equipment sta-
tus, equipment key parameters) via an equipment supplier’s cloud infrastructure.

This way, new innovative business models for equipment suppliers are supported by building the
base for “Production as a Service” offerings and remote predictive maintenance.

Also, further advanced business use cases with SMARTUNIFIER are possible, e.i., by implementing
real-time equipment monitoring capabilities in a cloud environment.

Another SMARTUNIFIER use case is to give Remote Assistance to equipment suppliers in order to
achieve production optimization and to ensure the most efficient usage of equipment resources for
customers.

1.3. Important Use Cases with SMARTUNIFIER 8

SMARTUNIFIER User Manual, Release 1.2.0

2

PREDICTIVE HEALTH
MAINTENANCE MONITORING
REMOTE
ASSISTANCE

¢ Y ¢ ¢ ¢

MORPH.c0
SMARTUNIFIER

Information Models Enterprise Context

Smart Mappings Simulation

Direct Supplier Access $ $ ¢

;= R T

EQUIPMENT PERIPHERY DEVICES

1.3.6 Migrate to Industry 4.0

Migrate step by step to modern communication standards and apply enterprise-wide seman-
tics to data.

A key feature of SMARTUNIFIER is to open an easy way to integrate new IT systems using modern
communication protocols. This is realized by simply adding additional communication channels to
the existing legacy channels.

Another feature of SMARTUNIFIER in this respect is, that all existing IT systems with their legacy
protocols and formats can still be operated in parallel with the newly established IT systems (e.g.,
Data Lake, Advanced Analytics, Cloud).

This way, it is possible to step by step introduce modern communication standards and incre-

1.3. Important Use Cases with SMARTUNIFIER 9

SMARTUNIFIER User Manual, Release 1.2.0

mentally migrate to a state-of-the-art Industry 4.0 IT architecture, but still keep the existing IT
infrastructure fully operable.

BN I O C T

Legacy Legacy Legacy New New
Protocol Protocol Protocol Protocol Protocol
IMORPH.pro

SMARTUNIFIER

Information Models Enterprise Context

Legacy Protocol $ $ $

- T i
g g —1 [

EQUIPMENT PERIPHERY DEVICES

1.3.7 Allow Unlimited Scalability

Rely on unlimited scalability from single equipment and devices to whole facilities.

SMARTUNIFIER is the first integration platform that allows nearly unlimited virtually scalability
in terms of number of connected equipment and devices. The SMARTUNIFIER platform can be
applied for integrating one single equipment or device, but with SMARTUNIFIER hundreds or even
thousands of equipment and devices within whole facilities can be integrated to upper-level systems

1.3. Important Use Cases with SMARTUNIFIER 10

SMARTUNIFIER User Manual, Release 1.2.0

or into the Cloud.

This is because SMARTUNIFIER is not a traditional middleware having a central limiting message
bus. Nor does SMARTUNIFIER contain any central performance and latency limiting database for
providing its communication features.

SMARTUNIFIER works as a distributed environment. Using advanced technologies of distributed
computing is the key for enormous scalability.

In a large installation a high number of SMARTUNIFIER Instances, each with low software foot-
print, provide the required communication capabilities. These single instances can be deployed to
any location within an enterprise IT network — on a server, on an equipment PC, within the Cloud
or on the SMARTUNIFIER Box.

Nevertheless, the configuration of all SMARTUNIFIER Instances can be managed centrally:
* central configuration of Information Models and Smart Mappings
* central Operations Monitoring of installed SMARTUNIFIER Instances.

Thus, SMARTUNIFIER is an essential piece of Industry 4.0 for any manufacturing enterprise — al-
lowing fab-wide and enterprise-wide management of production communication and IT integration
infrastructure.

DATA LAKE

EQUIPMENT EQUIPMENT EQUIPMENT EQUIPMENT EQUIPMENT EQUIPMENT

mmmmmm
mmmmmm
mmmmmm
mmmmmm

1.3.8 Enable Internet of Things

Out-of-the-box connections between equipment, devices and other IT systems to Cloud in-
frastructures.

By acting as a translator between equipment and any IOT device precise and secured access of data
consumers is possible. The easy connection to any Cloud based infrastructure is also possible (e.g.,
AWS, Azure).

1.3. Important Use Cases with SMARTUNIFIER 11

SMARTUNIFIER User Manual, Release 1.2.0

2

cLouD cLouD
SERVICE SERVICE

7

e f o B o o [o
T 0 0 T 0

IMORPH.pro
SMARTUNIFIER

Information Models Enterprise Context

Smart Mappings Simulation

¢ ¢ 4

1.4 Connectivity Endpoints and Data Formats

SMARTUNIFIER provides comprehensive connectivity support for a variety of equipment, devices
and IT systems. This includes many different pre-configured communication protocols and formats.
e.g., OPC-UA, file-based, database, message bus, Webservices and direct PLC connections. Precon-
figured interfaces are available also for many standard software applications. A number of these
connectivity endpoints / communication protocols require a first time customization from Amorph
Systems for a specific customer connectivity use case. Please contact Amorph Systems for detailed
information.

1.4. Connectivity Endpoints and Data Formats 12

SMARTUNIFIER User Manual, Release 1.2.0

1.4.1 Connectivity Endpoints / Communication Protocols

The following connectivity endpoints / communication protocols are supported by

SMARTUNIFIER.
Table 1: Connectivity Endpoints

Format Description

ADLink OpenSplice Connectivity to ADLink OpenSplice middleware via Data Distribu-
tion Service (DDS)

AMQP Interface to AMQP Message Broker via Active MQ

AODB Interface to various Airport Operational Database (AODB) Systems
that support standard communications via e.g., HTTP, REST, SQL

Apache Active MQ Interface to Active MQ Message Broker

AWS Elastic Container Ser- | Interface to applications running in AWS ECS

vice (ECS)

AWS Elastic Compute
Cloud (EC2)

Interface to applications running in AWS EC2

AWS IoT

Interface to AWS IoT

AWS IoT Greengrass

Interface to AWS IoT Greengrass via MQTT

AWS IoT Sitewise

Interface to AWS IoT SiteWise via OPC-UA

AWS CloudWatch

Interface to CloudWatch

AWS DynamoDB

Interface to AWS DynamoDB

AWS S3 Interface to AWS S3
AWS SNS Interface to AWS Simple Notification Service (SNS)
AWS SES Interface to AWS Simple Email Service (SES)

Barcode Reader

Connectivity to any TCP/IP based barcode reader (or other identi-

fication system)

Beckhoff Interface to Beckhoff PLC via Beckhoff OPC-UA Server

DDS Connectivity to Data Distribution Service (DDS)

File Read and Write files from arbitrary directories using File Consumer
/ File Tailer

FTP Upload and Download files to/from FTP servers

HTTP Send request to HTTP servers

HTTPS Send request to HTTPS servers

InfluxDB Interface to InfluxDB

IBM MQ Interface to IBM MQ Message Broker

In-Memory Communication via local machine

JDBC Access databases through SQL and JDBC (refer to SQL Databases)

JMS Send and receive messages to/from a JMS Queue or Topic using
plain JMS

MES Interface to a Manufacturing Execution System (MES) that support
standard communications via e.g., HTTP, REST, SQL

Modbus-TCP Communication via Modbus TCP Server / TCP Client

Microsoft Azure (IoT Hub)

Interface to Microsoft Azure Iot Hub via MQTT

Continued on next page

1.4. Connectivity Endpoints and Data Formats

13

SMARTUNIFIER User Manual, Release 1.2.0

Table 1 - continued from previous page

Format Description

MTConnect Communication Interface to MTConnect compliant agent applica-
tions

MQTT Connectivity by implementing MQTT Client

NoSQL Databases Cassandra, MongoDB, Hbase

OEE Interface to various Overall Equipment Efficiency (OEE) Applica-

tions that support standard communications via e.g., HTTP, REST,
SQL

OPC-UA Client

Connectivity by deploying one or multiple OPC-UA Client instances
per SMARTUNIFIER Communication Instances

OPC-UA Server

Connectivity by deploying one or multiple OPC-UA Server in-
stances per SMARTUNIFIER Communication Instances

PLC Connectivity to various PLCs (e.g. Allen-Bradley, B&R, FANUC,
General Electric (GE), Hilscher, Honeywell, Krauss Maffei, Mit-
subishi, Toshiba, Wago) via TCP/IP

PM Interface to a various Predictive Maintenance Systems that support
standard communications via e.g., HTTP, REST, SQL

REST Communication via REST using REST Server / REST Client (Web-
services)

SAP MII Interface to SAP MII

SAP RFC Interface to SAP via remote function call (RFC)

SAP Netweaver Interface to SAP Netweaver via HTTP

SCADA Interface to various SCADA Systems that support standard commu-
nications via e.g., HTTP, REST, SQL

SECS/GEM Communication with semiconductor or photovoltaic equipment us-

ing SECS/GEM interface protocol for equipment-to-host data com-
munications (TCP/IP).

Siemens Industrial Edge

Deployment of SMARTUNIFIER Communication Instances via
Siemens Industrial Edge Platform

Siemens MindSphere | Interface to MindSphere via REST
(REST)

Siemens MindSphere | Interface to MindSphere via MQTT
(MQTT)

Siemens S7 PLC/TCP

Interface to Siemens S7 1500 / 1200 / 400 / 300 via TCP protocol

Siemens S7 PLC/OPC-UA

Interface to Siemens S7 1500 / 1200 via OPC-UA protocol

Smart Devices

Interface to various Smart Devices (e.g., Smart Phones, Tablets)
that support standard communications via e.g., HTTP, REST, SQL

SOAP Communication via SOAP (Webservices)
Splunk Interface to Splunk via HTTP Event Collector
Splunk Interface to Splunk via Metrics Interface

SQL Databases

Interface to any SQL-based database like e.g., DB2, HSQLDB, Mari-
aDB, MSSQL, OracleDB, PostgreSQL, SQLServer and others

TCP Communication from/to any (binary) TCP based protocol
SFTP Upload and Download files to/from SFTP servers
UDP Communication from/to any (binary) UDP based protocol

Continued on next page

1.4. Connectivity Endpoints and Data Formats 14

SMARTUNIFIER User Manual, Release 1.2.0

Table 1 - continued from previous page

Format Description

VANTIQ Interface to VANTIQ

VIPA Speed 7 Interface to VIPA Speed 7 PLC

WAGO PLC/IP Connectivity to WAGO PLCs via OPC-UA
Websocket Interface to Websocket Server (TCP/IP)

Note: In case a customer requires to connect to other endpoints (e.g., computing devices, PLCs)
not listed in the table, please contact Amorph Systems.

1.4.2 Data Formats
The following data formats can be used in conjunction with the above defined connectivity end-

points. The possible formats for a certain connectivity endpoint may be restricted based on the
selected communication protocol. For detailed information please contact Amorph Systems.

Table 2: Data Formats

Format Description

Binary Handling of any binary communication format (e.g., fixed/variable
lengths fields, headers/footers)

CSV Handle CSV (Comma separated values) payloads

JSON Encode and decode JSON formats

TEXT Handling of any text-based communication format

XML Encode and decode XML formats

Note: In case a customer requires another data format not listed in the table, please contact
Amorph Systems.

1.5 What has changed in 1.2.0

Important: Breaking Change: This release contains a major update of the SMARTUNIFIER
Framework. Instances configured in an older release will not work with this version. Please contact
Amorph Systems for guidance on how to migrate SMARTUNIFIER Instances from previous releases.

Changed

* Improved architecture performance and stability by updating the framework to Scala version
2.13 and Java version 11.

1.5. What has changed in 1.2.0 15

SMARTUNIFIER User Manual, Release 1.2.0

* Communication Channels: Improved configuration of Communication Channels by enhanc-
ing the internal process of how the configuration forms are generated.

* Manager UI: Introduced new icons for several menu entries (Information Model, Mappings,
Device Type, Instance, Deployment, Deploy and Undeploy) to improve usability.

Fixed
* Manager Ul: Fixed small Ul styling issues.
* Communication Channel - IsoOnTCPClient: Fixed configuration issue.

* Mapping: Added check to make sure that the Rule name is valid.

1.5. What has changed in 1.2.0 16

CHAPTER
TWO

HOW TO INTEGRATE WITH SMARTUNIFIER

Each integration scenario follows the same workflow, which consists out of 5 steps:

1. Information Models - describe and visualize communication related data using hierarchical
tree structures.

2. Communication Channels - describe and configure the protocols needed for the scenario.
3. Mappings - define when and how to exchange/transform data between Information Models.
4. Device Types - define templates for Instances.
5. Instances - define applications that provide the connectiviy.
In order to keep artifacts in SMARTUNIFIER organized take a look at:
* Naming Convention for Artifacts

* Group Filter

2.1 Information Models

2.1.1 What are Information Models

Within the SMARTUNIFIER an Information Model describes the communication related data that
is available for a device or IT system. One device or one IT system therefore is represented by one
Information Model. An Information Model consists of so-called Node Types. Information Models are
build up in a hierarchical tree structure, i.e., elements within the Information Model can contain
further elements. This is required to model the data structure of devices as naturally as possible.

The kind of Node Types to be used depends on the protocol of the device or IT system. Before
creating the Information Model take a look in the chapter Communication Channels to see which
Node Types the Channel you want to use is supporting.

2.1.2 How to create a new Information Model

Follow the steps described below to create an Information Model:

* Select the SMARTUNIFIER Information Model Perspective (1).

17

SMARTUNIFIER User Manual, Release 1.2.0

= /MORPH.Pro

SMARTUnifier Configuration

Information Models

Channel Types

Communication Channels

Mappings

Device Types

Instances

Deployments

Deployment Endpoints

User Management

<

hdk
TTY

(L]
-

2.1. Information Models

18

SMARTUNIFIER User Manual, Release 1.2.0

* You are presented with the following screen containing a list view of existing Information

Models.
* In order to add a new Information Model, select the “Add Model“ button at the top right
corner (2).

* On the following screen provide the following mandatory information: Group, Name and
Version (3).

* The “Apply” button at the top right corner is enabled after all mandatory fields are filled in.
Click the button to generate a new Information Model (4).

* The newly created Information Model is now visible as a node on the left side of the screen.

+ Add Model o o

Y [MODEL NAME] A a ¢

_o equipment

EquipmentModel

* After the root model node is created, a new Information Model can be built up using definition
types.

* Perform a right click on the root model node and select “Add Node” (5). Select a Definition
Type from the dialog (6).

+ Add Model .
MEqui;:»menf'-"ﬁw a »
equipment
o + AddNode , | variable o

Event EquipmentModel

M copy

2.1.3 Node Types

Model node types are elements within an Information Model. Model node types are variables,
properties, events, commands and also collections such as arrays and lists. Each model node type
has a Data Type that defines whether the model node type is a predefined data type or a custom
data type.

2.1. Information Models 19

SMARTUNIFIER User Manual, Release 1.2.0

Variables

What are Variables

Variables are used to represent values. Within SMARTUNIFIER different types of Variables are de-
fined. They differ in the kind of data that they represent and whether they contain other Variables.
For example, a file Object may be defined that contains a stream of bytes. The stream of bytes
may be defined as a Data Variable that is an array of bytes. Properties may be used to expose the
creation time and owner of the file Object.

How to create a Variable

e Enter an ID (1)
* Enter a Member Type (2)
* Click the “Apply” button (3)

+ Add Model o o
I EquipmentModel A Q
[[NV NODE) A j MyFirstvariable
Description
o Slirmgr 7 X
Properties

What are Properties

Properties are working similar to Variables. Properties can be used for XML attributes when XML-
files are subject to be processed by SMARTUNIFIER, although XML elements are still represented
by Variables in the Information Model.

How to create a Propertie

e Enter an ID (1)
* Enter a Member Type (2)
* Click the “Apply” button (3)

2.1. Information Models 20

SMARTUNIFIER User Manual, Release 1.2.0

+ Add Model (6

M EquipmentModel A
NEW NODE] A

@ g
o MyFirstPropertie
Description

©...

Events

What are Events

SMARTUNIFIER is an event-driven software. In this context an event is an action or occurrence
recognized by SMARTUNIFIER, often originating asynchronously from an external data source
(e.g., equipment, device), that may be handled by the SMARTUNIFIER. Computer events can be
generated or triggered by external IT systems (e.g., received via a Communication Channel), by the
SMARTUNIFIER itself (e.g., timer event) or in other ways (e.g., time triggered event). Typically,
events are handled asynchronously with the program flow. The SMARTUNIFIER software can also
trigger its own set of events into the event loop, e.g., to communicate the completion of a task.
Each event defined in an Information Model has an event type.

An event type consists of one or multiple simple or structured variables. Clients subscribe to such
events to receive notifications of event occurrences.

How to create an Event

Enter an ID (1)

Select the Definition Type “Event” from the Drop-Down (2)

Enter a Member Type for the Event. e.g., “MyFirstEventType” (3)
Click the “Apply” button (4)

+ Add Model o)

M EquipmentModel a ¢

e ‘o MyFirstEvent

Description

o MyFirstEventType X

Within the Event Variables, Arrays or Lists can be added. Follow the steps below to add a Variable:

* Right click the Event node, select “Add Node” and choose a Definition Type (4)

2.1. Information Models 21

SMARTUNIFIER User Manual, Release 1.2.0

+ Add Model (]

M EquipmentMode Q 2
MR B W MyFirstEvent

Jescript

MyFirstEventType

Enter an ID (5)
* Enter a Member Type (6)

Click the apply button (7)

Click the “Save” button at the top right corner (8) to save the Information Model

+ Add Model 0 (]

I EquipmentModel A a 2 6
~ [3 MyFirstEvent [MyFirstEventType] t Variablel
BiN=w iioDE A

Commands

What are Commands

Commands are functions, whose scope is bound by an owning Information Model, like the methods
of a class in object-oriented programming. Commands within an Information Model are typically
invoked by an external IT system (e.g., an equipment) that triggers the command. In addition,
commands of a target Information Model (e.g., an MES) can be triggered by the SMARTUNIFIER
through a Mapping. A command contains one or multiple simple or structured Variables. Also a
command has a return parameter that likewise can be a simple or complex data type.

The lifetime of the command invocation instance begins when the client calls the command and
ends when the result is returned. While commands may affect the state of the owning model, they
have no explicit state of their own. In this sense, they are stateless. Each command defined in an
Information Model has a command type

How to create a Command

e Enter an ID (1)
* Click the “Apply” button (2)

+ Add Model 9 ©
_o MyFirstCommand

2.1. Information Models 22

SMARTUNIFIER User Manual, Release 1.2.0

The main two parts of a Command are the Request, referred to as Parameters within the
SMARTUNIFIER, and the Reply. Variables, Arrays and Lists can be added to both of these com-
mand parts. Follow the steps below to add a Variable to Parameters :

¢ Select the Parameters node from the tree
* Enter a Member Type (3)
* Click the “Apply” button (4)

+ Add Model o (]

o MyfFirstCommand iRequest

* Select the Reply node from the tree (5)
* Enter a Member Type (6)
* Click the “Apply” button (7)
+ Add ol " A

M Equipmenthodel A Q3
el mand A

escriptio

o 2eoly A Member Type
0 MyFirstCommandReply|

Follow the steps below to add nodes under the Parameter and Reply node:

* Right click the Parameter node, select “Add Node” and choose a Definition Type (8)

+ Add Model (]

Z MyFirstCommandRequest
+ addNode R Variable o
array

Enter an ID (9)
* Enter a Member Type (10)
Click the “Apply” button (11)

Click the “Save” button (12) to save the Information Model

+ Add Model 0 [X]

2.1. Information Models 23

SMARTUNIFIER User Manual, Release 1.2.0

Arrays

What are Arrays

Arrays allow to hold a collection of elements that have the same type.

How to create an Array

Enter an ID (1)

Select a Member Type for the Array by clicking the Member Type Drop-Down (2)

Enter the size of the Array (3)
Click the “Apply” button (4)

+ Add Model o S)
M EquipmentModel aQ ¢
VFirsthray [Sting: _o MyFirstArray
Description
o String X
©
.
Lists

What are Lists

Lists allow to hold a collection of elements (Variables).

How to create a List

e Enter an ID (1)
* Enter a Member Type for the List. E.g., “String” (2)
* Click the “Apply” button (3)

+ Add Model o

I EquipmentModel v .
tyFirstList [String] o MyFirstList

Description

o String x

W
(]

2.1. Information Models 24

SMARTUNIFIER User Manual, Release 1.2.0

2.1.4 Data Types

There are two

kinds of Data Types:

* Predefined Types e.g., String, Integer, Boolean and more. (Note: Only available for the
definition types - Variables, Properties, Arrays, Lists)

e Custom Types

How to create

a Variable as a Simple Type

* Add a new Variable, enter an ID and select a primary data type for the Data Type e.g., “String”

(1)
+ Add Model [x]
M cquipmentivodel Q<
ySimplevariable [String] MySimpleVariable
Table 1: Predefined Data Types

Type Definition

Boolean true or false

Byte 8 bit signed value (-27 to 27-1)

Int 32 bit signed value(-231 to 231-1)

String Sequence of characters

Char 16 bit unsigned Unicode character(0 to 216-1)

Double 64 bit IEEE 754 double-precision float

Float 32 bit IEEE 754 single-precision float

Long 64 bit signed value(-263 to 263-1)

Short 16-bit signed integer

Array Mutable, indexed collections of values.

List Class for immutable linked lists representing ordered collections of elements.

LocalDate Immutable date-time object that represents a date, often viewed as year-month-
day.

LocalDateTimelmmutable date-time object that represents a date-time, often viewed as year-
month-day-hour-minute-second.

LocalTime Immutable date-time object that represents a time, often viewed as hour-minute-
second.

OffsetDateTimémmutable representation of a date-time with an offset.

2.1. Information Models 25

SMARTUNIFIER User Manual, Release 1.2.0

How to create a Variable as a Custom Type
* Add a new Variable, enter an ID and enter a custom name for the Data Type e.g., “MyFirst-
ComplexVariableType” (1)

* Select the Custom Variable - “MyFirstComplexVariableType” - and add a new Variable under-
neath it (2)

Note: Model Node Types with custom data types can be easily duplicated throughout the Infor-
mation Model by selecting the same custom data type for a new model node type.

@ Edit Model: demo.doc ion i 1tModel:1.0.0 2

P EquipmentModel
~ [l MyFirstCompl

T R b S R S o MyFirstComplexVariable

Stringvaratie Sring

Description

MyFirstComplexVariableType x

Data Types for Properties, Arrays and Lists can be defined as shown above for Variables.

2.2 Communication Channels

2.2.1 What are Channels

Communication Channel or simply Channel refers to a transmission medium. A Channel is used
to convey information from one or several senders (or transmitters). Communicating data from
one location to another requires a pathway or medium. These pathways are called Communication
Channels, and the information is transmitted with the help of communication protocols. Each
Information Model can have one Channel or many, and each model can choose which Channels
it subscribes to. The information is transmitted through the Communication Channels in both
directions: from the external system to the SMARTUNIFIER application and vice versa.

2.2.2 How to create a new Channel

Follow the steps below to create a new Channel:

* Go to the Communication Channels perspective by clicking the “Communication Channels”
button (1)

2.2. Communication Channels 26

SMARTUNIFIER User Manual, Release 1.2.0

= /AMORPH.PIO

SMARTUnifier Configuration <

Information Models '::
Channel Types :.
Communication Channels ###
Mappings &
Device Types

Deployments

Instances ﬁ]:

Deployment Endpeints i
User Management as

* To create a new Channel, select the “Add Channel” button at the top right corner (2)

#4 Communication Channels a® + <

Group Filter < Group 4 Name Version Model Description 6

* The creation of a Communication Channel is split up into two parts. First enter basic infor-
mation about the new Communication Channel

— Fill in the information for the Channel identifier such as: Group, Name and Version.
Description is optional (3)

— Besides that, associate the Channel with an Information Model (4)

— Select the type this Channel represents from the Drop-Down (5). A list of available
Channel Types and a description of how to configure each of them can be found below

¢ Click the “Save” button (6) to save the Channel

2.2. Communication Channels 27

SMARTUNIFIER User Manual, Release 1.2.0

@ Add Communication Channel o [x]

o channel.demo.enterprise

EnterpriseChannel
1.0.0
Description

o demo.productionmonitoring.unifier.EnterpriseModel.1.0.0

2.2.3 Channel Types and Configuration

There are several Channel Types available with SMARTUNIFIER. The supported Communication
Channel Types are listed in the chapter Connectivity Endpoints / Communication Protocols. If a spe-
cific Communicating Channel Type is not available in this product version, please contact Amorph
Systems. In many cases the provision of a specific Communication Channel Type can be provided
as extension to the standard product.

The configuration of the Communication Channels can be done on Channel, Device Type and In-
stance level.

Note: Important to note is that the configuration of a Channel can be overwritten accordingly.
For example: The configuration done in the Communication Channel view can be changed in the
Device Type or Instance view.

The following paragraphs lay out the configuration process of selected Channel Types. If the Chan-
nel Type you want to use is not described, please contact Amorph Systems for configuration guid-
ance.

File-based

File Tailer

Characteristics:

* File Tailer monitors a given file in a given location.

* Data is processed line by line.

* Note that the File Tailer does not support the definition type List in the Information Model.
Supported File Formats:

* CSV

* JSON

¢ XML

2.2. Communication Channels 28

SMARTUNIFIER User Manual, Release 1.2.0

Information Model Requirements
The first Node after the root node Bl must be of type Event .
CSv

* The node after the Event must be of type List '* - multiple lines, each representing a data
record.

* Fields, which are separeted by commas, are represented by the Node Type Variable . Note
that the order of fields in the CSV file must match the order of Variables in the Information

Model.
M EquipmentModel
A |3 csvDemoEvent [CSVDemoEvent]
1 Pressure,Temperature, Timestamp, PartNr{ A [csvData [CSVData]
17.5,20,2020.06.11-06:56:31,0001 - [>ressure Double]
18.9,22,2020.06.11-07:56:31, 0002 N
XML

* Elements of the XML file are represented by the Node Type Variable M.

* Attributes of the XML file are represented by the Node Type Property [“.. In order to assign
attributes to elements in the Information Model, the element Node Type &4 must be a Custom

Data Type.
1 <?xml version="1.0"?2> X1 EquipmentModel
2 <DATA> A 3 xmIDemoEvent [XMLDemoEventType]
3 <PRESSURE>17.6</PRESSURE> K PRESSURE [String]
4 <TEMPERATURE>25</TEMPERATURE> - ’ -

<TIMESTAMP>2020.06.11-07:56:31</TIMESTAMP>
<PARTNR>0001</PARTNR>
7 </DATA>

How to use File Tailer with CSV

1. Select File tailer (CSV) from the Drop-Down.
2. Click the Configure button.

@ Edit Communication Channel: demo.scenario1:EquipmentChannel:1.0.0

demo.scenariol

EquipmentChannel

Description

demo.scenariol.EquipmentModel.1.0.0 v

0 File tailer (CSV) - e

3. Make sure the root model node is selected to be able to configure the File Tailer to String
and CSV String to Model.

2.2. Communication Channels 29

SMARTUNIFIER User Manual, Release 1.2.0

4. Enter the file path for the CSV-file on your machine.

5. Enter the separator which is used in the CSV-file, the string delimiter and the timestamp

format if one is used.

6. If the CSV file contains a header enable ignoreFirstLine.

444 Channel Configuration: demo.scenario1:EquipmentChannel:1.0.0

[EquipmentModel e

~ [csvDemoEvent [CSVDemoEventType]
M=azssure s

7. Select the event node in the tree on the left side.

File Tailer to String

250

Milliseconds

tailFromend
reopenBetweenChunks

CSV String to Model

tring delimiter

Yyyy.MM dd-HHmm:ss

[ignoreFirstLine

Note: The entries of a CSV-File can only be mapped directly to an Event object and its parameters.

8. Check the routes checkbox.

9. Enter a regular expression for the message filter.

10. Click the Apply button, then the Close button and save the Channel by clicking the Save
button on the upper right corner.

4 channel Configuration: demo.scenario1:EquipmentChannel:1.0.0

I EquipmentModel
~ [csvDemoEvent [CSVDemoEventType] o

® 2

o .

File Tailer to String

(10 28

X

CSV String to Model

Description of configuration properties:

2.2. Communication Channels

30

SMARTUNIFIER User Manual, Release 1.2.0

Property Description Example

Separator Separator type, used in the csv file Y s

Delimiter Values that have an additional delimiter like “Date”, “Time” | "

Timestamp for- | Format of the timestamp YYYY-MM-DD

mat HH:mm:ss

File Path to the csv file C:\test.csv

Delay Millis Delay between checks of the file for new content in mil- | 250
liseconds

TailFromEnd Set to true to tail from the end of the file, false to tail from | true, false
the beginning of the file

ReopenBe- If true, close and reopen the file between reading chunks | true, false

tweenChunks

routes Path of a node in the Information Model true, false

messageFilter- Regular Expression for the message filter used in the im- | .x

RegEx plementation

File Consumer

Characteristics

* File Consumer monitors a specified folder - the so-called input folder

If a file is inserted the following actions take place:

— The Trigger of the specified Rule in the Mapping is activated

— Thus, the Rule is executed

 After successful execution of the rule the file is moved into a so-called output folder

* In case of an exception the file is moved into an error folder

Supported File Formats:

* CSV
* JSON
* XML

Information Model Requirements

The first Node after the root node Bl must be of type Event

Csv

* The node after the Event must be of type List

record.

* Fields, which are separeted by commas, are represented by the Node Type Variable

- multiple lines, each representing a data

Note

that the order of fields in the CSV file must match the order of Variables in the Information

Model.

2.2. Communication Channels

31

SMARTUNIFIER User Manual, Release 1.2.0

M EquipmentModel
A |3 csvDemoEvent [CSVDemoEvent]

1 Pressure,Temperature, Timestamp, PartNr{ A [csvData [CSVData]

2 17.5,20,2020.06.11-06:56:31,0001 -
3 18.9,22,2020.06.11-07:56:31,0002

XML
* Elements of the XML file are represented by the Node Type Variable M.

* Attributes of the XML file are represented by the Node Type Property . In order to assign
attributes to elements in the Information Model, the element Node Type 4 must be a Custom

Data Type.
1 <?xml version="1.0"?2> X1 EquipmentModel
2 <DATA> A [xmIDemoEvent [XMLDemoEventType]
3 <PRESSURE>17.6</PRESSURE> K PRESSURE [String]
4 <TEMPERATURE>25</TEMPERATURE> - -
5 <TIMESTAMP>2020.06.11-07:56:31</TIMESTAMP> .
6 <PARTNR>0001</PARTNR>

7 </DATA>

How to use File Consumer with CSV

1. Select File reader (CSV) from the Drop-Down.
2. Click the Configure button.

@ Edit Communication Channel: demo.scenario1:FileConsumerWithCSV:1.0.0

demo.scenariol

FileConsumerWithCSV

Description

demo.scenariol.EquipmentModel.1.0.0

o File reader (CSV) - Q

3. Make sure the root model node is selected to configure the File Consumer to String as well
as the CSV String to Model.

4. File Consumer to String - Configuration
* Enter a path for the input folder - InFolder
* Enter a path for the process folder - ProcessFolder
* Enter a path for the output folder - OutFolder
* Enter a path for the error folder - ErrorFolder
* Select the CharSet according to the file in use

5. CSV String to Model - Configuration

2.2. Communication Channels 32

SMARTUNIFIER User Manual, Release 1.2.0

* Enter the separator which is used in the CSV-file
* If needed: Set string delimiter and/or the timestamp format

* If the CSV file contains a header enable ignoreFirstLine

444 Channel Configuration: demo.scenario1:FileConsumerWithCSV:1.0.0

o 2 _° FileConsumer to String

c\Unifiersin

M EquipmentModel
Event [CSVDemoEventType]

c\Unifier\Process
c\Unifien\out

c\Unifier\Error

UTF-2

CSV String to Model

o

y delimiter

YyyY.MM.dd-HH:mm:ss

ignoreFirstline

0

seconds

6. Specify the Event used by selecting the event node in the tree on the left side

Note: The entries of a CSV-File can only be mapped directly to an Event object and its parameters.

7. File Consumer to String - Configuration
* Enable the FileNameFilter checkbox
* Enter a regular expression in order to determine which file is to be processed in the
input folder
8. Csv String to Model - Configuration
* Enable the routes checkbox
* Start of processing
— If the entire content of the file is processed on this event enter a wildcard in the

RegEx field
— If the processing starts at a specific line enter a regular expression in the RegEx field
in order to identify the line
9. Click the Apply button, then the Close button and save the Channel by clicking the Save

button

2.2. Communication Channels 33

SMARTUNIFIER User Manual, Release 1.2.0

444 Channel Configuration: demo.scenario:FileConsumerWithCSV:1.0.0

M EquipmentModel
~He:

ST

VDemoEventType] 0

X ° FileConsumer to String

CSV String to Model

Description of configuration properties:

®

Property Description Example
Separator Separator type, used in the csv file)y
Delimiter Values that have an additional delimiter like “Date”, “Time” | "
Timestamp Format of the timestamp YYYY-MM-DD
format HH:mm:ss
ignoreFirst- | Delay between checks of the file for new content in mil- | true, false
Line liseconds
TailFromEnd | Set to true to tail from the end of the file, false to tail from | true, false
the beginning of the file
InFolder Path leading to the Input Folder C:\FileConsumer\In
OutFolder Path of a node in the Information Model C:\FileConsumer\Out
ErrorFolder | Regular Expression for the message filter used in the imple- | C:\FileConsumer\Error
mentation
CharSet Encoding of the file in use UTF-8, “UTF-8 BOM,
Process- Regular Expression for the message filter used in the imple- | C:\FileConsumer\Process
Folder mentation
Databases
InfluxDB

Characteristics

In case of a time series data use case where you need to ingest data in a fast and efficient way you
can use InfluxDB.

Information Model Requirements

Inserts

* The node after the root model node must be of type Event

table.

* Columns of databases are represented by Variable

which represent a database

2.2. Communication Channels

34

https://www.influxdata.com/

SMARTUNIFIER User Manual, Release 1.2.0

M influxDB
A |5 ModuleA [DBDataType]

How to configure InfluxDB

1. Select the root model node in the tree on the left.

2. Configure the InfluxDB
* Enter the URL to the database
* Enter the database name
* Enter the database user name and the password
3. Click the Apply button and save the Channel by clicking the Save button on the upper right

corner.
444 Channel Configuration: test:InfluxDB:1.0.0 ¢
Bl <D 2 nfluxDB
~ I3 ModuleA [DBDataType]
2ro0 o [String -
p://127.0.0.1:8086
m- ©
<
Mere InfluxDB

admin

SQL Database

Characteristics

* The SQL Channel can be configured for the following two scenarios:

— Inserting data
- Updating data

— Retrieving data
* When inserting values into the database please note that “infinity” values are converted au-

tomatically into “null” values.
Information Model Requirements

Insert/Update

2.2. Communication Channels 35

SMARTUNIFIER User Manual, Release 1.2.0

 The node after the root model node must be of type Event [Z which represent a database
table.

* In case of relational databases: Tables which are dependent on each other require a List

* Columns of databases are represented by Variables H.

M patabaseModel
* MATERIAL.NR ORDER_NR PRODUCT CUSTOMER A |3 Databaselnsert [DatabaselnsertType]
1 HS787FSTC 121 AXY_200 DemoCompany1 String]
2 HS787FSTC 123 AXY_150 DemoCompany2 -
3 HS777FSTC 120 AXY_100 DemoCompany1
4 HS767FSTC 123 AXY_200 DemoCompany 1

Select
* The Command & defines that after a request is made, a reply with a result is expected.

* Parameters ' within a Command represent a collection of query parameter - query parame-
ters are defined as Variables M.

* Reply ¥ within a Command represents the result of the Command - results are defined as
Variables M.

¥ DatabaseModel
~ [DatabaseCommand [Command_DatabaseCommand]

¥ MATERIALNR ORDER_ NR PRODUCT CUSTOMER A~ (3 Parameters [QueryParameters]

1 HS787FSTC 121 AXY_200 DemoCompany1 orcere i

2 HST8TFSTC 123AXY_150 DemoCompany2 - B matevizihis [String]
3 HS777FSTC 120 AXY_100 DemoCompany1 ~ @ Reply [QueryResult]
4 HST6TFSTC 123AXY_200 DemoCompany1 g'

How to configure the SQL-Database

1. Select the root model node in the tree on the left.
2. Configure the database connection
* Select the database type.
* Specify a reconnection interval.
* Enter the database connection url for the specific database type.
— DB2: jdbc:db2:server:port/database
— HSQLDB: jdbc:hsgldb:file:databaseFileName;properties
— ORACLE: jdbc:oracle:thin:prodHost:port:sid
— PostgreSQL: jdbc:postgresql://host:port/database

— SQLServer: jdbc:sqlserver://[serverName[\instanceName][:portNumber]][;
property=value[;property=valuel]

— MariaDB: jdbc: (mysql |mariadb):[replication: |loadbalance: |sequential: |aurora:]/
/<host>[:<portnumber>]/[database][?<key1>=<valuel1>[&<key2>=<value2>]]

2.2. Communication Channels 36

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/java/src/tpc/imjcc_r0052342.html
http://www.hsqldb.org/doc/2.0/guide/dbproperties-chapt.html#dpc_connection_url
https://docs.oracle.com/cd/B28359_01/java.111/b31224/jdbcthin.htm
https://jdbc.postgresql.org/documentation/80/connect.html
https://docs.microsoft.com/de-de/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver15
https://mariadb.com/kb/en/about-mariadb-connector-j/

SMARTUNIFIER User Manual, Release 1.2.0

* Enter the database user name and password.

444 channel Configuration [x]
S MG M 0L Databece
) Pa;"f‘f’smf‘e”m"‘e'e’s] @ o
~ (3 Reply [Qu
Table 2: Description of database configuration properties
Property Description Mal Example
Type Type of the | Yes| MariaDB, SQLServer, ORACLE, HSQLDB, DB2,
database PostgreSQL
ReconnectInterval Time to recon- | Yes| 10 (in milliseconds)
nect if connec-
tion fails
JdbcUrl Url to connect to | Yes| SQLServer: jdbc:sqlserver://<serverName:1433;
database databaseName=unifier MariaDB:
jdbc:mariadb://localhost:3306/unifier?
connectTimeout=5000 DB2: jdbc:db2:/
/127.0.0.1:50000/TESTDB HSQLDB:
jdbc:hsqldb:file: $dbFileName;shutdown=true
ORACLE: jdbc:oracle:thin:@localhost:1521/
MYCDB PostgreSQL: jdbc:postgresql://127.0.0.
1:5432/postgres
Username and | Credentials of | Yes
password the database

Note: The configuration of specific information model nodes differs whether you want to perform
an insert or an select statement on the database. Inserting data into the database requires an
event node whereas selecting data requires a command node in the Information Model.

Select Statement

3. Select the command node in the tree on the left.

4. Check the custom query checkbox and enter the sql query.

444 channel Configuration

I DatabaseModel
R e e S o
~ [Parameters [QueryParameters]

{° SQL Database

SELECT PRODUCT, CUSTOMER FROM SU_DEMO_UC3_TABLE WHERE MATERIAL_NR = S(MATERIAL_NR}

2.2. Communication Channels

37

SMARTUNIFIER User Manual, Release 1.2.0

Insert Statement
3. Select the event node in the tree on the left.
4. Check the insert checkbox and enter the table name. If required enter a schema name.

44 Channel Configuration o
aQ <

< g

SU_Demo_UG3_Table

I HostModel

~ [DatabaseEvent [DatabaseEventType] e

SQL Database

demo

5. Each variable under Parameters and Reply needs to be assigned to a database column. Select
the variable node under Parameters and in the tree select what needs to be configured.

6. Check the assign database column checkbox and enter the column name as it is defined in
the used database.

4 channel Configuration o

[DatabaseModel Q< SQL Database
~ [7] DatabaseCommand [Command_DatabaseCommand]

~ () Parameters [QueryParameters] o

ORDER_NR

Protocols

MQTT
Characteristics

Information Model Requirements
* The first Node after the root node Il must be of type Event
* The following Node Types can be used under the Event Node:

with a Simple Data Type represents the key-value pairs.

with a Custom Data Type represent objects that can contain key-value pairs.
— With Lists '* you can aggregate multiple variables.
* In case of publishing a topic, the Information Model determines the structure of the payload.

* In case of subscribing to a topic make sure that the Information Model structure matches the
payload.

How to configure the MQTT Channel

1. Select the MQTT (JSON) as Channel Type.

2.2. Communication Channels 38

SMARTUNIFIER User Manual, Release 1.2.0

2. Click the Configure button.

@ Edit Communication Channel: demo. i03:MQTTchannel:1.0.0 X

P
demo.scenario3

MQTTchannel

Description

demo.scenario3.HostModel.1.0.0 -

[1 o, . o)

3. Select the root model node
4. Enter host and port of the MQTT Broker used.

5. Specify a path to a folder on your local machine. The temp directory inside the SMARTUNI-
FIER Manager can be also used.

6. Enter user name and password. If there are no credentials needed (e.g., test.mosquitto.
org) make sure the fields remain empty.

#4 Channel Configuration: demo. 103:MQTT 11.0.0 >

~
1 HostModel a <

~ [d HostEvent [HostEventType]

MQTT to String
o ;65\ mosquitto.org

1883

5

60

60

© -

Client 1D

B

[Retained

o Username

7. Select the event node in the tree on the left.
8. Enable either producer or consumer depending on the use case and enter a topic name.

9. Click the Apply button.

444 channel Configuration: demo.scenario3:MQTTchannel:1.0.0 o v X

b
B Hostioc 2 MQTTto String
~ [E HostEvent [HostEventType] o
Quality [String

[erermes

TopicName

<]<]<]<]

Json to Model

2.2. Communication Channels 39

SMARTUNIFIER User Manual, Release 1.2.0

Certificates

Encrypted connection using TLS security is supported. Follow the steps below to encrypt the con-
nection.

1. Enable the Tls checkbox
2. Enable the Tls Configuration checkbox

* Enter the path to the CA (certificate authority) certificate of the CA that has signed the
server certificate

Note: Make sure the CA certificate is valid.

3. Enable the Client checkbox

* Enter the path to the client certificate. The client certificate identifies the client just like the
server certificate identifies the server.

* Enter the path to the private client key.
* If applicable enter the password

* Select the protocol from the Drop-Down.

444 Channel Configuration: demo. i03:MQT T :1.0.0 &
Q ¢
1 HostModel [J HostnameVerification
~ [@ HostEvent [HostEventType] t Tis
C:\AWS\AWSIot\Certificates\test\AmazonRootCA1.pem

G\AWS\AWSIot\Certificates\test\Certificate.pem.crt

C\AWS\AWSIot\Certificates\test\private. pem.key

TLSVIA

Disconnected Buffer

In case the connection is lost, messages can be buffered offline when the Disconnected Buffer is
enabled. Follow the steps below to enable the DisconnectedBuffer.

1. Enable the DisconnectedBuffer checkbox.

2. Set the Buffer Size - defines the amount of messages being hold e.g., 5000.
3. (Optional) Enable PersistBuffer.

4. (Optional) Enable DeleteOldestMessage.

Description of configuration properties:

2.2. Communication Channels 40

SMARTUNIFIER User Manual, Release 1.2.0

Property Description Example
host URL of the MQTT Broker. test.
mosquitto.org
port Port of the MQTT Broker. 1883
reconnectInter- | Time interval to reconnect to the MQTT Broker after loss of | 5
val connection in seconds
connection- Time interval the connection times out in seconds 60
Timeout
keepAlivelnter- | Time the session persists in seconds 60
val
persistence- Path to a folder for the persistence store of the MQTT temp
Folder
clientld Identifies an MQTT client which connects to an MQTT Bro- | MyClientID
ker
username Client username Username
password Client password Password
hostnameVeri- | Hostname Verification true, false
fication
tls Encryption true, false
producers Data producer true, false
consumer Data consumer true, false
protocol TLS protocol version TLSv1.1,
TLSv1.2
disconnected- | Offline buffering of data true, false
Buffer
bufferSize Amount of message allowed in the buffer 5000
persistBuffer Buffer persistence true, false
deleteOld- Delete oldest message in buffer true, false
estMessage
OPC-UA

Characteristics

OPC (Open Platform Communications) enables access to machines, devices and other systems in a
standardized way. To learn more about the standard visit the OPC-UA website.

Information Model Requirements

* The following Node Types can be used to model data structures:

— Variables

— Variables

with a Simple Data Type.

with a Custom Data Type.

2.2. Communication Channels

41

https://opcfoundation.org/about/opc-technologies/opc-ua/

SMARTUNIFIER User Manual, Release 1.2.0

M siemensS7PLC
~ [Processing [ProcessingType]
State [In1]
~ [Module_C [ModuleType]

D [tring]
v [Module_B [ModuleType]
~ [Module_A [ModuleType]

OPC-UA Client

1. Select OPC-UA Client as Channel Type.
2. Click the Configure button.

@ Add Communication Channel B o

documentation

OPCUA

1.0.0

Description

documentation.protocoll.opcua. PLC.1.0.0 -

o OPC-UA Client - ¥ e

3. Make sure the root model node is selected to configure the OPC-UA Client
4. Enter an applicationName
5. Configure the serverTcpConfiguration
* Enter an ipAdress
* Enter the port
* Define an endpoint
* Set a requestTimeQut
6. Configure the defaultSubscriptionAttribute
* Define a publishingInterval
7. Configure monitoringParameters

* Set a samplingInterval

2.2. Communication Channels 42

SMARTUNIFIER User Manual, Release 1.2.0

* Enter a queueSize

* Enable discardOldest depending on the use case

i Channel Configuration

(]
Q < .
(v BT > OPC-UA Client
~ [ProcessingModule [ProcessingModuleType]
B SoLoe o Demoapplication
i &
127.00.1
4840
dem
000
1000

discardoldest

8. Assign OPC-UA data block variables to corresponding variables in the Information Model by
selecting the variable in the tree

9. Assign data block
e Enable the variables checkbox

e Enter the nodeld

4% channel Configuration

Q ¢

7 OPC-UA Client
ProcessingModuleType]

e o

ns=3;5="DB_Processing_Module" ' Temperature

jroupName

REST
REST Server

1. Select the root model node in the tree on the left.
2. Enter a path prefix.

3. Configure the REST Server endpoint.

* Enter the IP.

* Enter the port.

* Enter the Content-Type.

2.2. Communication Channels 43

SMARTUNIFIER User Manual, Release 1.2.0

4. Check the webapp checkbox and provide the WAR-file if you want to host an application.

5. Click the Apply button and save the Channel by clicking the Save button on the upper right

corner.

i Channel Configuration: test:RESTServer:1.0.0

-~
¥l RESTServer o ‘O\ v
A [RestData [RestDataType] REST Server
M Fressure [String]
M Termperaure Sring 9 demo
o endpoint
127.0.0.1
8090
text/html
o webapp

Description of configuration properties:

<>

d

Property Description Example
pathPrefix Prefix for the URL e.g., demo

Port Port of the REST server e.g., 9002, 9000,
IP IP address of the REST server http://localhost

DefaultContentType used to indicate the media type of the resource

application/json,

application/xml, text/

html, text/csv

webapp Possibility to host an application

true, false

REST Client

1. Select the root model node in the tree on the left.
2. Configuration of the REST Client

* Enter the IP.

* Enter the Default-Content type.

e Enter a timeout.

2.2. Communication Channels

a4

SMARTUNIFIER User Manual, Release 1.2.0

4% Channel Confi ion: demo io3:RestClientChannel:1.0.0 3 X
Q T .
I HostModel REST Client
A [HostEvent [HostEventType]
Qualiy [Sting o http://localnost:8090

application/json

siTimesut

10

Seconds -

3. Click on the variable in the tree which needs a configuration.
4. Check the checkbox.

5. Variable configuration.

* Enter the URL.

* Select the HTTP method.
6. Click on the Add Header button to add headers.

7. Check the headers checkbox.
8. Configure Key-Value pair of the header.

* Enter a name.

* Enter a value.

9. Click the Apply button and save the Channel by clicking the Save button on the upper right

corner.
444 channel Configuration: demo. i03: lientChannel:1.0.0 o v
Q ¢ .
I HostModel REST Client
 [A HostEvent [HostEventType]
] o hitp://localhost:8092
GET
o Retry-After

12

Description of configuration properties:

2.2. Communication Channels 45

SMARTUNIFIER User Manual, Release 1.2.0

Property Description Example
URL URL of the REST Server. localhost: 8090
RouteModelPath | Path of a node in the Information Model. A node | /Model/
can be a command, an event or a variable RestMetrics/Event/
partQualityEvent
RouteUrl URL of the exposed node . localhost: 8090
HttpMethod HTTP method for the action performed by the | GET, POST, PUT
Client.
HeaderName To provide server and client with additional in- | Retry-After: 12
and Header | formation
Value
ContentType Is used to indicate the media type of the resource. | application/json
WaitTimeoutDu- | Timeout in seconds until request is failing 10
ration

2.3 Mappings

2.3.1 What are Mappings

Mappings represent the SMARTUNIFIER component that define when and how to ex-
change/transform data between two or multiple Information Models. In other words, it is acting
as a translator between the different Information Models. One Mapping consists of one or multiple
Rules. A Rule contains a Trigger, which defines when the exchange/transformation takes place, and
a list of actions that are defining how the exchange/transformation is done.

2.3.2 How to create a new Mapping

Follow the steps below to create a new Mapping definition:

* Go the Mappings perspective by clicking the “Mappings” button (1)

2.3. Mappings

46

SMARTUNIFIER User Manual, Release 1.2.0

= /AMORPH.PIO

SMARTUnifier Configuration

Information Models

Channel Types

Communication Channels

Mappings

Device Types

Instances

Deployments

Deployment Endpoints

User Management

<

1T
TYY

e
-

* Following screen containing a list view of existing Mappings is displayed

2.3. Mappings

47

SMARTUNIFIER User Manual, Release 1.2.0

* In order to add a new Mapping, select the “Add Mapping” button at the top right corner (2)

<> Mappings Q@ (=3

Group Filter < Growp 4 Version Model Deseription é

* On the following screen provide the following mandatory information: Group, Name, Version
and a Description which is optional (3)

¢ Click the “Add Model” button (4)
* Select the Information Model for this Mapping and enter a name for it (5)
¢ “Remove Model” button (6) removes the Model

* After all mandatory fields are filled in, the “Save” button at the top right corner is enabled.
Click the button to submit the new Channel (7)

* The newly created Mapping is now visible in the list view

¢ T AddMapping

a
Configuration Rules 6 Q

o equipment demo.productionmonitoring:EquipmentModel:1.0.0 -
cee demo.productionmonitoring:0eeModel:1.0.0 - o

2.3.3 How to create Rules
Graphical

Follow the steps described below to create Rules:

* Select the “Edit” button (1) placed in line with the mapping entry for which the mapping rule
is to be created.

Mappings Q + &

Group 1 Neme jersian Wodels Deseription

demo.productionmonitoring 1.00 o 4

* The edit mapping view is displayed (see figure below):

* Select the “Add Rule” button at the top right corner (2).

2.3. Mappings 48

SMARTUNIFIER User Manual, Release 1.2.0

@ Edit Mapping: demo.productionmonitoring:EquipmentToOeeMapping:1.0.0

© -

>
e

[<]<l<]<]

v [info [Equipmentinfo]

entOrderChanged [CurrentOrderChanged]

Configuration Rules i
demo.productionmonioring
E;ijp\:\entToOeeMapping
'CU 0
* The following screenshot shows the Rule Editor.
e Enter Rule name (3).
* Drag and drop the Trigger from the model panes into the trigger field (4).
@ Edit Mapping: demo.productionmonitoring.unifier:EquipmentToOeeMapping:1.0.0 Q
:;j‘pmemModeH = ;,EEVModeww - 0O Rule Configuration o a >
mEi";“E"‘E":‘;‘fi e ac mADEEM"dE‘ penged M%b Oyésréh;nged Rule Orcer has changed .
~ [CurrentOrder [Order] tring
v Order [Order] V]
o M e Cr B Trigger Type £
o T e, — Lo
------ = equipmentModell/StartNewOrderFlag x
quipmentPr CounterChanged [t 3
Actions [Target <=> Source]
V]

Send Event CurrentOrderChanged to oeeModel1

osetagel Curr [string]
oeeMadeltCurr [string]
[string]

oeeMogel1/CurrentOrderChanged,Quantiy

[in]

* Drag and drop the Source information into the Source field (5).

* Drag and drop the Target information from the model panes into the target field (6). The
source field is enabled. The Source and the Target information types must be matched one

on one (e.q., String to String)

* After all mandatory fields have been filled out, select the “Apply” button (7) in order to save

the newly created Rule.

* The Rule Editor is closed and the newly created Rule is displayed in the Rules List.

* Select the “Save” button placed in the upper right corner to save the Mapping.

@ Edit ing: demo.p nitoring.unifier:EquipmentToOeeMapping:1.0.0 (<]
equipmentModell - O O eeModelt . O Rule Configuration O @ %
g a ¢ Q5 wenme -
[EquipmentModel [0eeModel N : OrderChanged Rule Order has changed
soEEC hanged] B

~Hd »1 o

v EEEECs
~ B CurrentOrder [Ordel

<

Consumables [Consumables]
quipmentinfo]

< <

<
[<l=l<l=<l<]<]=I<]<1<]<]<]<]<]<]

equipmentModel1/StartNewOrderFlag

Trigger Type £

x

Actions [Target <=> Source]

Send Event CurrentorderChanged to oeeModel1

[Suingl = emterpriseMogelt /EquipmentName

[suingl = ecuipmentModelt/Gurrer

[Suingl = equipmer

] _ 3 | ssuiameniicdei/Gure

-

2.3. Mappings

49

SMARTUNIFIER User Manual, Release 1.2.0

Rules Scenarios

A Rule is defined by its elements: Trigger, Target and Source. Each element is a note assigned from
an Information Model.

Based on the combinations of a Rule elements, all the scenarios are listed in the table below.

Trigger

Target

Source

Variable of a custom type

Variable

Variable

Variable of a custom type

Custom type Variable

Variable

Variable of a custom type

Variable of a custom type

Variable

Variable of a custom type

Event Variable
Variable of a custom type

Command Variable
Variable of a custom type

Variable Variable Variable
Variable of a custom type

Custom type Variable Variable

Variable of a custom type

Variable of a custom type

Variable

Variable of a custom type

Event Variable
Variable of a custom type

Command Variable
Variable of a custom type

Array of a custom type Variable Variable
Variable of a custom type

Custom type Variable Variable

Variable of a custom type

Variable of a custom type

Variable

Variable of a custom type

Event Variable
Variable of a custom type
Command Variable
Variable of a custom type
Array Variable Variable

Variable of a custom type

Custom type Variable

Variable

Variable of a custom type

Variable of a custom type

Variable

Variable of a custom type

Event Variable
Variable of a custom type
Command Variable

Continued on next page

2.3. Mappings

50

SMARTUNIFIER User Manual, Release 1.2.0

Table 3 - continued from previous page

Trigger Target Source
Variable of a custom type
Property of a custom type | Variable Variable
Variable of a custom type
Custom type Variable Variable

Variable of a custom type

Variable of a custom type

Variable

Variable of a custom type

Event

Variable

Variable of a custom type

Command

Variable

Variable of a custom type

Property

Variable

Variable

Variable of a custom type

Custom type Variable

Variable

Variable of a custom type

Variable of a custom type

Variable

Variable of a custom type

Event

Variable

Variable of a custom type

Command

Variable

Variable of a custom type

Command

Variable

Variable

Variable of a custom type

Variable of a Command

Custom type Variable

Variable

Variable of a custom type

Variable of a Command

Variable of a custom type

Variable

Variable of a custom type

Variable of a Command

Event

Variable

Variable of a custom type

Variable of a Command

Command

Variable

Variable of a custom type

Variable of a Command

Event

Variable

Variable of a custom type

Variable of an Event

Variable

Custom type Variable

Variable of a custom type

Variable of an Event

Variable

Variable of a custom type

Variable of a custom type

Variable of an Event

Variable

Continued on next page

2.3. Mappings

51

SMARTUNIFIER User Manual, Release 1.2.0

Table 3 - continued from previous page
Trigger Target Source
Event Variable of a custom type
Variable of an Event
Variable
Command Variable of a custom type
Variable of an Event
Variable

Code

More complex scenarios, which are currently not supported by the graphical view can be imple-
mented via the code editor. Rules are based on Scala.

Basics - Rule construct

A Rule is always starting with a Trigger (1). The Trigger can represent a Variable, an Event or
a Command; within one of the selected Information Models. After the trigger call mapTo (2)
and define the function body by adding curly braces (3). Depending on the Trigger declare the
TriggerInstance (4). Depending on the type of the Trigger use the naming accordingly:

Q Q

Trigger mapTo { TriggerInstance =>

The Source (5) is the content of the TriggerInstance (e.g., In case the Trigger is a Variable, then
is the Source an Instance of that Variable) In order to assign the Source to the Target, add the :=
operator (6). The Target can be any variable you want to map to (7).

Trigger mapTo { TriggerInstance =>

@ &,

Target := Source

2.3. Mappings 52

O 0 N o 1AW N =

SMARTUNIFIER User Manual, Release 1.2.0

Variable to Event Mapping

In this case the mapping of the Complex Variable CurrentOrder in the EquipmentModel and of a
Simple Variable in the EnterpriseModel to the EquipmentNewOrderStart Event in the MesModel is
described.

Trigger: EquipmentModel.StartNewOrderFlag (line 1)
TriggerInstance of EquipmentModel.Alarm: variable (line 1)

Since values are assigned to an Event, call the function - send, on the EquipmentNewOrder-
StartEvent (line 2) and define the TriggerInstance - event (line 2).

The Targets are defined by entering the path of the variables in the event -
event.EquipmentId (line 3).

Listing 1: Rule - StartOrder - Variable/Event

EquipmentModel.Alarm mapTo {variable =>
MesModel .EquipmentAlarm.send(event => {

D

event.EquipmentId := EnterpriseModel.EquipmentName
event.OrderNr := EquipmentModel.CurrentOrder.OrderNr
event.MaterialID := EquipmentModel.CurrentMaterialID
event.AlarmInfo := EquipmentModel.AlarmInfo
CommunicationLogger.log(variable, event)

Event to Variable Mapping

In this case the mapping of values inside the TransferNewOrder Event from the MesModel into
variables from the EquipmentModel is described.

The Trigger is defined by entering the path of the Event - MesModel.TransferNewOrder (line
1). Since an Event is used as Trigger, the TriggerInstance is named accordingly - event (line
1).

In the function body provide the Complex Variable NewOrder and the Simple Variable NewME-
SOrderFlag with data from the MesModels TransferNewOrder Event.

Targets are defined by entering the path of the variables like - Equipment-
Model.NewOrder.OrderNr (line 2).

In order to assign values to OrderNr, MaterialNr and Quanity of the Complex Variable
NewOrder, enter the TriggerInstance event followed by the variable name of the Transfer-
NewOrder Event - event.OrderNr (line 2).

In this case it is also possible to provide the variable NewMesOrderFlag with a Boolean like -
true (line 5).

2.3. Mappings 53

QA W N =

O O N o AW N =

N
> w 0O R~ O

SMARTUNIFIER User Manual, Release 1.2.0

Listing 2: Rule - TransferNewOrder - Event/Variable

MesModel . TransferNewOrder mapTo {event =>
EquipmentModel.NewOrder.OrderNr := event.OrderNr
EquipmentModel .NewOrder.MaterialNr := event.MaterialNr
EquipmentModel .NewOrder.Quantity := event.Quantity
EquipmentModel .NewMESOrderFlag := true

3

Commands Mapping

The following scenario describes a Rule mapping incoming data from a file to MQTT. When the
FileEvent is triggered - the rule executes first the DatabaseCommand in order to retrieve data from
a database.

Trigger is defined by entering the path of the Event - file.FileEvent (line 1). Since an Event
is used as Trigger, the TriggerInstance should be named accordingly - event (line 1).

Inside the function body execute a Command. The execution of a Command is defined by
entering the path of the Command. At the end of the path, call the execute function (line 2).
The TriggerInstance is named accordingly - command (line 3).

The lines 3-5 show the first part of the Command. Here assign values from the source model
to the Command Parameters.

Since every Command has a Reply, we need to define the reply section - (line 6).

In this case send out the data over MQTT after the data is retrieved from the database. In
the reply function body, enter the path of the MqttEvent. Since this is the 2nd Event, the
TriggerInstance can be named - event1 (line 1).

Inside the function body assign values from the FileEvent (line 8-10) as well as from the Reply
(line 11-12) to the MqttEvent.

Listing 3: Rule - File2MqttWithDB - Event/Commands

file.FileEvent mapTo {event =>

database.DatabaseCommand.execute(command => {
command.orderNr := event.orderNr
command.materialNr := event.materialNr
CommunicationLogger.log(event, command)
}, reply => {
mgtt.MgttEvent.send(eventl => {
event1.Quality := event.quality

eventl.0rderNr := event.orderNr
eventl.MaterialNr := event.materialNr
eventl.Customer := reply.customer

event1.Product := reply.product
CommunicationLogger.log(reply, eventl)

b))

(continues on next page)

2.3. Mappings

54

15
16

O 0 N o 1 AW N =

I
2 W N = O

L2 -

SMARTUNIFIER User Manual, Release 1.2.0

(continued from previous page)

D

Mapping with Lists

The following scenario describes a Rule that is mapping incoming data from a file to MQTT. The
MQTT Model contains a List called DataList. Note that lists can only be mapped in the code view.

» Create a variable listIltem that holds a reference of a newltem in the DataList (line 6)

* Call the variable from the listltem and assign the value from the file event (line 8)

Listing 4: Rule - FileToMQTT - Lists

csv.FileEvent mapTo { event =>

event.items.foreach { item =>
mgtt.MqttEvent.send(eventl => {

val listItem = eventl.DataList.newItem

listItem.Timestamp := item.Timestamp
listItem.Pressure := item.Alarmlevel

CommunicationLogger.log(event, eventl)
b))
}

Logging
Logging can be added in the Rule implementation by calling - CommunicationLogger.log (line 4)

Listing 5: Rule with Logging

EquipmentModel.Alarm mapTo {variable =>
MesModel.EquipmentAlarm.send(event => {

event.EquipmentId := EnterpriseModel.EquipmentName
CommunicationLogger.log(variable, event)
b))
3
Compiling

You can compile the code for the selected Rule by clicking the “Compile” button (1) and check for
compilation errors before saving the Rule.

2.3. Mappings 55

SMARTUNIFIER User Manual, Release 1.2.0

@ Edit Mapping: demo.productionmenitoring.unifier:EquipmentToMesMapping:1.0.0 [>]
EnterpriseModel - O I EquipmentModel . [i1 RuleConfiguration O @
I EnterpriseModel : [EquipmentModel TransferNewOrder Rule Command Transfer a new Order

eWMESOrderFlag [Boolean P
~ [CurrentOrder [Order]

1+| Meshodel . Transferi

[<1<]<]

~ [NewOrder [0

[<1<]<]

cessingModules [ProcessingModules]
~ [ModuleA [Module]

el

2.4 Device Types

2.4.1 What are Device Types

With SMARTUNIFIER Device Types it is possible to have multiple Communication Instances, which
share common configuration parameters. A Device Type contains one or multiple Mappings. Each
Mapping contains one or multiple Information Models and its associated Communication Channel.
Within a SMARTUNIFIER Device Type it is possible to over-write existing Communication Channel
configurations. Device Types are especially important, when integrating several similar pieces of
equipment or devices. In this case, the Device Type can be reused for all Instances (i.e., one instance
represents one equipment).

2.4.2 How to create a new Device Type

Follow the steps described below to create a SMARTUNIFIER Device Type.
* Select the SMARTUNIFIER Device Type Perspective (1).

2.4. Device Types 56

SMARTUNIFIER User Manual, Release 1.2.0

= /MORPH.[ro

SMARTUnifier Configuration <

Information Models '::
Channel Types .‘.

—— T
Communication Channels Y
Mappings &

Device Types

2

Instances

Deployments

I ﬁ,}

Deployment Endpoints

User Management pil

* Click on the “Add Device Type” button from the upper right corner (2).

* The creation of a Device Type is split up into two parts. First provide the basic information
about the Device Type like the Group, the Name, and the Version. Optionally, provide a short
description (3).

* In the next step provide one or multiple Mappings previously created. To do so click the “Add
Mapping” button (4). After selecting a Mapping (5) the associated Information Models show
up. In case the wrong Mapping was selected click the “Delete Mapping” button to remove the
Mapping from the Device Type (6). Now select a Communication Channel for each Information
Model from the Drop-Down (7).

* Similar to the Communication Channel view it is possible to change the configuration of
the Channel within the Device Type view. In case of changes in the configuration click the
“Configure” button (8). This action over-writes previous configurations.

2.4. Device Types 57

SMARTUNIFIER User Manual, Release 1.2.0

* The new Device Type can be saved by clicking the “Save” button at the top right corner (9).

@ Add Device Type o 5 <]
o demo.produstionmanitoring
SUDeviceType
100
odemo productionmaonitoring.unifier:EquipmentToOeeMapping:1.0.0 A | o
Models Channels
enterpriseModel1 o demo.productionmonitoring.unifier:EnterpriseChannel:1.0.0 - o

equipmentModel1 demo.productionmonitoring.unifier:EquipmentOpcUaClientChannel:1.0.0

oeeModel1 demo_productionmonitoring.unifier: OEEMgttChannel:1.0.0

2.5 Instances

2.5.1 What are Instances

A SMARTUNIFIER Instance is a dynamically created application that can be deployed to any suit-
able IT resource (e.g., Equipment PC, Server, SMARTUNIFIERBox, Cloud), and which provides the
connectivity functionality configured. Therefore, a SMARTUNIFIER Instance uses one or multiple
Mappings and selected Communication Channels from a previously defined Device Type.

2.5.2 How to create a new Instance

Follow the steps described below to create a SMARTUNIFIER Instance.
* Select the SMARTUNIFIER Instances Perspective (1).

2.5. Instances 58

SMARTUNIFIER User Manual, Release 1.2.0

= /MORPH.[DIO

SMARTUnifier Configuration £

Information Models T:=
Channel Types .“.
Communication Channels ##
Mappings &

Device Types @

Instances {a} o

Deployments a
Deployment Endpoints i
User Management -

* Click on the “Add Instance” button from the upper right corner (2).

* Select a Device Type from the Drop-Down (3)

* The details for the Instance are automatically taken from the Device Type (4). However,
Group, Name, Version and the Description can still be changed.

* The Mapping defined in the Device Type show up in the Mapping area (5).

* To change the existing configuration or if no configuration has been made yet, click the “Con-
figure” button (6)

* Save the SMARTUNIFIER Instance by clicking the “Save”(7)

2.5. Instances 59

SMARTUNIFIER User Manual, Release 1.2.0

(®Add Instance

demo.productionmenitoring:SUDeviceType:1.0.0

demo.productionmonitoring

©
g

SUDeviceType

100

Models Channels
enterpriseModel1
equipmentModell

oeeModel1

L -)

-
2

-
it

* In order to deploy, run and stop the Instance navigate to the Deployment perspective.

B

&

[

2.5. Instances

60

CHAPTER
THREE

DEPLOYMENT

SMARTUNIFIER supports the deployment of Instances on several computing environments:
* Local - on the same environment the SMARTUNIFIER Manager is running on.
* Docker - on containerized environments.
* Fargate - on the AWS Cloud using fully managed service AWS Fargate.

Learn how to operate and monitor your SMARTUNIFIER Instances.

3.1 What is a Deployment

With the SMARTUNIFIER Deployment capability you can deploy your SMARTUNIFIER Instances
to any IT resource (e.g., Equipment PC, Server, SMARTUNIFIERBox, Cloud) suitable to execute
SMARTUNIFIER Instances.

Depending on the Deployment Type a Deployment Endpoint has to be initially created. For deploy-
ments on a local computer, no Deployment Endpoint needs to be set.

Currently, the following Deployment Endpoints are supported:

* Local: Deployment of a SMARTUNIFIER Instance to your local Computer where the
SMARTUNIFIER Manager is running on.

* Docker: Deployment of a SMARTUNIFIER Instance using Docker Container
* AWS: Deployment of a SMARTUNIFIER Instance on the AWS Cloud using AWS Fargate.
Getting started:
* Select your environment and create the Deployment:
— Local
— Docker
— Fargate
* Learn how to operate an Deployment.

* Learn how to monitor an Deployment.

61

SMARTUNIFIER User Manual, Release 1.2.0

3.2 Deploy Locally

Follow the steps described below to order deploy an Instance locally:

* Select the SMARTUNIFIER Deployment perspective (1).

= /MORPH.DIO

SMARTUnifier Configuration <

Informaticn Models E=
Channel Types ."‘.
Communication Channels H#
Mappings &y
Device Types @
Instances =[§]=
Deployments a o
Deployment Endpeints i
User Management -4

* Click on the “Add Deployment” button (2).
* Select the Deployment Type Local from the pop-up (3).

Deployment

uuuuuu

* Select the SMARTUNIFIER Instance to be used in the Deployment (4).

* Select the level for the log file configuration (5). We recommend the log level of type Info in

3.2. Deploy Locally 62

SMARTUNIFIER User Manual, Release 1.2.0

case of a normal deployment scenario.

* When all mandatory fields are filled click the “Save” button (6).

@ Add Local Deployment

o -

3.3 Deploy with Docker

Note: Before creating the deployment of an Instance make sure you created a Docker Deployment
Endpoint. The Deployment Endpoint specifies the location where you want the container to run.

Follow the steps described below to order deploy an Instance using a Docker Container:

* Select the SMARTUNIFIER Deployment perspective (1).

3.3. Deploy with Docker 63

SMARTUNIFIER User Manual, Release 1.2.0

Deployment

= /MORPH.DIO

SMARTUnifier Configuration {

Information Models E:

Channel Types .‘.
Communication Channels *#
Mappings e
Device Types @
Instances =[§l:]=

Deployments

Deployment Endpoints i

User Management -

Click on the “Add Deployment” button (2).
Select the Deployment Type Docker from the pop-up (3).

LLLLL

Select the SMARTUNIFIER Instance to be used in the Deployment (4).
Select the Docker Endpoint ID created in the Docker section from the Drop-Down menu (5).
Select the Image from the Drop-Down menu (6).

Select the level for the log file configuration (7). We recommend the log level of type Info in
case of a normal deployment scenario.

When all mandatory fields are filled click the “Save” button (8).

3.3. Deploy with Docker 64

SMARTUNIFIER User Manual, Release 1.2.0

@ Add Docker Deployment o

9900

3.4 Deploy with AWS Fargate

SMARTUNIFIER supports the deployment of Instances on Amazon Web Services (AWS) using AWS
Fargate.

In order to deploy your SMARTUNIFIER Instances using AWS Fargate an AWS Account is required.

Before deploying a SMARTUNIFIER-Instance using AWS Fargate please refer to the Prerequisites
section and make sure all requirements your Account needs to fulfill are met.

3.4.1 Prerequisites
Specialized Knowledge

Before deploying and operating SMARTUNIFIER Instances using AWS Fargate, it is recommended
that you become familiar with the following AWS services. (If you are new to AWS, see Getting
Started with AWS)

* Amazon Elastic Container Service (ECS)
e Amazon Virtual Private Cloud (VPC)
e Amazon CloudWatch

You should also be familiar with the used Communication Channel and its capabilities of the de-
ployed SMARTUNIFIER Instance.

AWS Resources

For the deployment of SMARTUNIFIER Instances on AWS Fargate the following resources are re-
quired:

Amazon S3 - Bucket

SMARTUNIFIER is using an Amazon S3 Bucket to upload Instances in an archive file format. We
recommend to create a private Bucket dedicated for the SMARTUNIFIER.

AWS VPC and Subnets

In order for SMARTUNIFIER to deploy Instances your AWS account a VPC and Subnets are needed.
Please note that the Default VPC should not be used.

3.4. Deploy with AWS Fargate 65

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://docs.aws.amazon.com/ecs/?id=docs_gateway/
https://docs.aws.amazon.com/vpc/index.html
https://docs.aws.amazon.com/cloudwatch/?id=docs_gateway
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

SMARTUNIFIER User Manual, Release 1.2.0

Amazon ECS - Cluster

SMARTUNIFIER is using AWS Fargate for the deployment of Instances on the AWS Cloud. Therefor
an ECS Cluster is required. We recommend to create one Cluster dedicated for SMARTUNIFIER
deployed Instances.

AWS ECR - Repository

SMARTUNIFIER is using an AWS ECR repositroy in order to push an Docker Images, which is
created by an AWS CodeBuild project. We recomment to create one reposiory dedicated for
SMARTUNIFIER Instance images.

IAM - User

SMARTUNIFIER complies with the security best practices in IAM and does not need root privileges.
We recommend to create one user dedicated for SMARTUNIFIER. The IAM user follows the general
rule of least privileges and allows only policies needed for the deployment of SMARTUNIFIER
Instances.

Create the IAM user by following the steps described in the AWS IAM documentation the TAM dash-
board. The IAM user for SMARTUNIFIER must use the AWS access type programmatic access.

Attach the following permission:

3.4. Deploy with AWS Fargate 66

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

SMARTUNIFIER User Manual, Release 1.2.0

Policy ARN Description
arn:aws:iam::aws:policy/AmazonS3FullAccess Provides full access to all buck-
ets via the AWS Management
Console.
arn:aws:iam::aws:policy/AWSCodeBuildAdminAccess Provides full access to AWS
CodeBuild via the AWS Man-
agement Console. Also at-
tach AmazonS3ReadOnlyAccess
to provide access to down-
load build artifacts, and at-
tach IAMFullAccess to create
and manage the service role for
CodeBuild.
arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess Provides administrative access
to Amazon ECR resources.
arn:aws:iam::aws:policy/AmazonECS_FullAccess Provides administrative access
to Amazon ECS resources and
enables ECS features through
access to other AWS service re-
sources, including VPCs, Auto
Scaling groups, and CloudFor-
mation stacks.
arn:aws:iam::aws:policy/CloudWatchFullAccess Provides full access to Cloud-
Watch.

Programmatic system credentials

SMARTUNIFIER needs the set up of a credential profile in order to deploy Instances on AWS
Fargate. We recommend to create a new access key after 90 days.

Listing 1: Credentials Profile

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

IAM Role - AWS CodeBuild Serice Role

CodeBuild requires a service in order to interact with dependent AWS services:

¢ Access to Amazon S3 in order to retrieve SMARTUNIFIER Instance artifacts - such as libraries
and configuration files.

* Access to AWS ECR in order to push the container image in the specified repository

Create the follwing IAM Role via the AWS console.

3.4. Deploy with AWS Fargate 67

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-additional.html#setup-additional-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

SMARTUNIFIER User Manual, Release 1.2.0

Listing 2: AWS CodeBuild Service Role

{

"Version": "2012-10-17",
"Statement”: [

{

"Sid": "CloudWatchLogsPolicy”,

"Effect”: "Allow”,

"Action": [
"logs:CreatelLogGroup”,
"logs:CreatelLogStream”,
"logs:PutLogEvents”

1,

"Resource”: [
gn

"Sid"”: "CodeCommitPolicy”,
"Effect”: "Allow",
"Action”: [
"codecommit:GitPull”
1,
"Resource"”: [
"y

"Sid": "S3GetObjectPolicy”,
"Effect”: "Allow”,
"Action”: [
"s3:GetObject”,
"s3:GetObjectVersion”
1,
"Resource"”: [
g

"Sid": "S3PutObjectPolicy”,
"Effect”: "Allow”,
"Action”: [

"s3:PutObject”
1,
"Resource"”: [

"y

"Sid": "ECRPullPolicy",
"Effect”: "Allow”,
"Action”: [

(continues on next page)

3.4. Deploy with AWS Fargate 68

SMARTUNIFIER User Manual, Release 1.2.0

(continued from previous page)

"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForLayer”,
"ecr:BatchGetImage"

1,
"Resource"”: [
"y
]
1,
{
"Sid": "ECRAuthPolicy",
"Effect”: "Allow",
"Action": [
"ecr:GetAuthorizationToken"”
1,
"Resource"”: [
"y
]
1,
{
"Sid": "S3BucketIdentity”,
"Effect”: "Allow”,
"Action": [
"s3:GetBucketAcl”,
"s3:GetBucketLocation”
1,
"Resource”: "x"
}
]
3

3.4.2 Architecture

The deployment of SMARTUNIFIER-Instances on AWS Cloud is handled by the SMARTUNIFIER
Manager. The Manager can run on any On-Premise location such as, server environments and
Industrial PCs; however, in order to deploy Instances on AWS an internet conneciton is required. In
order to run SMARTUNIFIER Manager on AWS Cloud please see the SMARTUNIFIER Installation
Manual.

SMARTUNIFIER is using the AWS SDK for Java to make deployments of Instancs to AWS Fargate.
Following AWS Services are used during the deployment process:

* AWS Simple Storage Service (Amazon S3) (Mandatory).
* AWS CodeBuild (Mandatory).

* AWS Elastic Container Registry (Mandatory).

* AWS Elastic Container Service (Mandatory).

* AWS Fargate (Mandatory).

* Amazon CloudWatch (Optional).

3.4. Deploy with AWS Fargate 69

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/fargate/
https://aws.amazon.com/s3/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/
https://aws.amazon.com/cloudwatch/

SMARTUNIFIER User Manual, Release 1.2.0

AWS Cloud

Internet

_—/ Gateway

h Public subnet
——1.) Upload Instance ———»| s3 :

VPC NAT

Gateway &

Retrieving
source

MORPH . p rOLiz) C(r:egéigg“udslan 1 .5 -7‘:;;&4». ecr

SMARTUNIFIER AWS SDK for Java Project

ate Cluster |

i | SMARTUNIFIER |

Code Build

Instance 1

Instance 2 |

SMARTUNIFIER |
Instance 3 H

3) frovsiring - ‘ 13—
\:MARTUNIFER |

00

Availability Zone A

Sequence of events

1. Upload of the SMARTUNIFIER Instance as an archive file format to Amazon S3.
2. Creation and automatic triggering of an AWS CodeBuild project.

3. The AWS CodeBuild project uses the archive file from the specifed Amazon S3 Bucket in order
to build an Docker Image for the particular SMARTUNIFIER Instance.

4. When finished, AWS CodeBuild pushes the Image to a specified ECR Repository.

5. Is the Image available on the ECR Repository a Fargate Task Definition is created as well as
an ECS Service which is using the Task Definition.

6. By default, the Task is not started directly. Starting and Stopping of tasks can be done via the
SMARTUNIFIER Manager or the AWS Console.

3.4. Deploy with AWS Fargate 70

SMARTUNIFIER User Manual, Release 1.2.0

=d AWS S
alt SMARTUNIFIER Manager) alt aws

% Amazon 53
SMARTUNIFIER Manager
|

SmartUnifierCodeBuildser

Upload SU Instance Artifacts {Conf & Libs) viceRole reguired

Create Code Build Proje

Start Code

Request SU
Instamoe Artifacts [34—_| Build Project
0

from 53}

e
Y

_,.J Fushing Image()
Create Fargate Task Definition()

Create ECS Service[)

|

|

|

|

|

|

|

|

|

| |
| |
1 1 r-l
| |

| |) .

| | Pulling Container

| | Image from ECR{}

| |

| |

| e =

| |

| |

|

T

|

|

|

|

|

|

:
:
|
I
:
:
|
I
:
:
|
I
i
Lr]
|
:
I
I

Start ECS Service(}

T
|
'
Stop ECS Service ()

3.4.3 Planning the Deployment
Task Sizing

Each SMARTUNIFIER Instance runs as java byte code, thus having a low footprint. We recommend
using the following guideline for Task Sizing.

Note: Please note that AWS Fargate is pricing based on the vCPU and memory resources, which
are specified during the set up.

3.4. Deploy with AWS Fargate 71

SMARTUNIFIER User Manual, Release 1.2.0

CPU Memory Values Instance Workload
(Number of Map-
pings)

0.25 vCPU 0.5GB, 1GB, and 2GB <=5

0.5 vCPU Min. 1GB and Max. 4GB, in 1GB increments > 6

3.4.4 Deployment Steps

Expected Time

* Deployment of an SMARTUNIFIER Instance on AWS Fargate (Exisiting AWS Resources) -
expected deployment time: 5 min

* Deployment of an SMARTUNIFIER Instance on AWS Fargate (Creation of needed AWS Re-
sources required) - expected deployment time: 30-40 min

Deployment of the SMARTUNIFIER Instance

If you have not already set up an AWS Deployment Endpoint please refer to chapter: AWS Endpoint.
Follow the steps described below to deploy a SMARTUNIFIER Instance on AWS Fargate:
* Select the SMARTUNIFIER Deployment perspective (1).

3.4. Deploy with AWS Fargate 72

SMARTUNIFIER User Manual, Release 1.2.0

= /MORPH.[DIO

SMARTUnifier Configuration <

Information Models E=
Channel Types ."‘.
Communication Channels H#
Mappings &
Device Types @
Instances {é]:
o Deployments

Deployment Endpoints i
User Management -t

¢ Click the “Add” button (2).

¢ Select AWS (3).

Deployment a@+ o

* Select the SMARTUNIFIER Instance you want to deploy (4):

* Select your AWS account in form of a Deployment Endpoint created previously (5) and con-
figure the following parameters:

— Select the VPC in which you want to deploy the SMARTUNIFIER Instance.
— Select a Subnet within the VPC.

— Select a Security Group.

3.4. Deploy with AWS Fargate 73

SMARTUNIFIER User Manual, Release 1.2.0

Select a IAM Role for AWS CodeBuild.

* AWS CodeBuild needs an service role so that it can interact with dependent AWS
services onbehalf of SMARTUNIFIER.

Select a S3 Bucket.

Select a ECS Cluster in which the Instance should be deployed.

Select an ECR Repository.

* The AWS CodeBuild project, which is created and triggered by SMARTUNIFIER,
pushes an Image to the provided Amazon ECR Repository.

Select the Task’s - CPU.

Select the Task’s - Memory.
* Select the Log File Configuration (Determines the log level detail) (6).
* Save the Deployment by clicking the “Save” button (7).

@ Add Deployment @ 1 9

o demo.productionmonitoring.unifier:SUlnstance:1.0.0 -
Endpoint 10

dpolnt 10
a demo.productionmoni toring:AWSAccoun 1

vpc-0b7318756fa7fofab

Subnet -

subnet-09ec948d12803ed24

Security Group -

SMARTUnifierintegrationTestECSContainer_SG

arn:aws:iam: ‘role/SMARTUnifierIntegrationTestCodeBuildServiceRole

sieu-central-1 cluster/SMARTUnifierIntegrationTestCluster

oy
.25 vCPU -
Memory

512 -

Log File Configuration
@. Debug -

* Go back to the list view by clicking the “Close” button and deploy your SMARTUNIFIER
Instance by clicking the “Deploy” button (8).

Q + o %

Group Name Version Deployment Type State e

demo.productionmonitoring.unifier 1.00 AWS NotDeployed

* You can start and stop the Instance using SMARTUNIFIER by clicking the “Start”/”Stop”
button or using the AWS Console.

3.4. Deploy with AWS Fargate 74

SMARTUNIFIER User Manual, Release 1.2.0

Monitoring

Once deployed and started, the SMARTUNIFIER Instance logs can be accessed via Amazon Cloud-
Watch.
In order to access log files follow the steps below:

* Go to the Amazon CloudWatch Service via the Console.

* Select Log groups from the menu on the left.

* Select awslogs-testinstance and select a log Stream.

3.5 How to deploy, run and operate a deployed Instance

3.5.1 How to deploy an Instance

* In order to start the Instance, click first the “Deploy” button (1). A message is shown, that
confirms the successful deployment of the Instance.

Deployment Q + o n

demo.scenariol 1.00 Local NotDeployed

3.5.2 How to run an Instance

* After successfully deploying the Instance, the state changes from NotDeployed to Stopped. You
can now click the enabled “Start” button (2). The Instance state will change to Started. A
message is shown, that confirms the successful start of the Instance.

Deployment Q + o8
Name version Deployment Type sute

demo scenariol 100 Local Stopped 2 [+Y

3.5.3 How to stop an Instance

* To stop the Instance, click the “Stop” button (3).

Deployment Q + o n

3.5. How to deploy, run and operate a deployed Instance 75

SMARTUNIFIER User Manual, Release 1.2.0

3.5.4 How to delete a Deployment of an Instance

* Click on the “Delete” button to delete the Deployment for a specific Instance (4). This is only
possible if the Instance is in the state Stopped.

* Click on the “Edit” button to perform changes to the Deployment (5). It is only possible to
edit a Deployment if the Instance is not yet deployed. In the case the Instance is already
deployed, only the details of the Deployment can be viewed.

O

Deployment +

dema.scenario1:Equipment1:1.0.0 Daocker Started

*e

3.5.5 How to un-deploy an Instance
* In order to un-deploy an Instance, make sure that the Instance is not running. If necessary
stop the Instance.
* Go to the edit Deployment view by clicking the “Edit” button.
* Click the “Remove Deployment” button in the upper right corner (6).

* The Instance state changes to NotDeployed and the Deployment can be edited. Please note
that the Instance associated with the Deployment cannot be changed.

Deployment Q + o %

demo.scenario 1 100 Local Stopped '+Y

3.6 How to monitor a deployed Instance

* In order to monitor an Instance, access the Dashboard view by clicking the “Dashboard”
button (7).

* If the Instance is in the state NotDeployed the Dashboard cannot be accessed.

Deployment Q + o R

Group Name Version Deployment Type State Q

demo.seenariol 1.00 Local started

* The Dashboard provides the following information:

Channels associated with the Instance

Mappings associated with the Instance

CPU Usage of the Instance

Memory Usage of the Instance

3.6. How to monitor a deployed Instance 76

SMARTUNIFIER User Manual, Release 1.2.0

— Status of the Instance

— Start time of the Instance

33 Status Dashboard: demo.scenario1:Equipment1:1.0.0

@ Status Started
Type Mode! .
i @© Time started 2021-02-11 18:14:11
deme basiccommunication:CSVChannel:1.0.0 layer<csvstring2model Connected demo basiccommunication:CsvDataModel:1.0.0 @ Time Up
d ation:RESTServerChannel:1.0.0

implementation-rest-server Comnected demobasiccommunication:RestDatalodel: 1.0.0

CPU Usage

(0%)
= Meppings

‘

demo.basiccommunication : CSVTORESTMapping : 1.0.0

CsvDataModel, RestDataMods!

@ Memory Usage (1.23%)

3.6. How to monitor a deployed Instance

77

CHAPTER
FOUR

ADMINISTRATION

Learn how to create Deployment Endpoints and how to manage User Accounts within
SMARTUNIFIER.

4.1 Deployment Endpoints

4.1.1 What are Deployment Endpoints

Deployment Endpoints are used to identify the location of a Deployment (i.e., the definition where
an Instance is executed). With the Deployment Endpoints, you can create and maintain those
locations. This feature can only be accessed by a user with the administrator role.

4.1.2 Deployment Endpoints Types
Docker

SMARTUNIFIER supports the Deployment of Instances using Docker Containers. Before creating
a new Deployment for an Instance using Docker. install Docker on your device and open up the
Docker Remote API Interface. If you want to learn more about Docker and how to install it, visit
the Docker Website. When your Docker Daemon is up and running you have to provide a Docker
endpoint.

* Navigate to the SMARTUNIFIER Deployment Endpoints perspective (1).

78

https://success.docker.com/article/how-do-i-enable-the-remote-api-for-dockerd
https://docs.docker.com/install/

SMARTUNIFIER User Manual, Release 1.2.0

= /MORPH.DrO

SMARTUnifier Configuration {

Information Models E=

Channel Types .‘.
Communication Channels *#
Mappings &
Device Types @
Instances =[§l:]=

Deployments

o Deployment Endpoints i

User Management -

* Click on the “Add Endpoint” button (2).
* Select the Deployment Type Docker from the pop-up (3).

Deployment Endpoints Q@ +
© ®
aws

* In the “Add Endpoint” view a set of configuration parameters is required (4)
- Provide a Group and a Name

- Provide URL. Depending on your use case choose between the unix e.g., unix:///var/
run/docker.sock or the tcp e.g., tcp://127.0.0.1:2375 protocol.

* After all mandatory fields are filled in, click the “Save” button (5).

4.1. Deployment Endpoints 79

SMARTUNIFIER User Manual, Release 1.2.0

@ Add Docker Endpoint

demo basiccommunication

o DockerEndpoint

tp//127.0.0.1:2375

AWS

°Bx

Before deploying a SMARTUNIFIER Instance on AWS Fargate you need to create an AWS Deploy-
ment Endpoint. The AWS Deployment Endpoint specifies, which AWS account should be used for

the deployment.

Follow the steps described below to create an AWS Deployment Endpoint:

* Select the SMARTUNIFIER Deployment Endpoints perspective (1).

= /AMORPH.[DrO

SMARTUnifier Configuration

Information Models
Channel Types
Communication Channels
Mappings

Device Types

Instances

Deployments

°Deplc-yrnent Endpoints

User Management

£

bk
Y

¢

&

4.1. Deployment Endpoints

80

SMARTUNIFIER User Manual, Release 1.2.0

* (Click the “Add” button (2).
e Select AWS (3).

@ Deployment Endpoints a® k=3

GROUP FILTER
g

* Configure your AWS account by entering the following parameters (4):
— Enter a Group and a Name.
— Enter your AWS account ID.
— Select the region.
* Save the new Endpoint by clicking the “Safe” button (5):
€ Edit AWS Endpoint: demo:AWSAccount1 & d
©
ACV;Awauuﬂ

count 1D

Region *
eu-central-1 ¢

4.2 User Management

4.2.1 About User Management

Within the User Management the administrator can create users accounts, assign permissions as
well as activate or deactivate user accounts.

4.2.2 Add a new user

This procedure describes how to create a new user account.

* Select the SMARTUNIFIER User Management perspective (1).

4.2. User Management 81

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-region.html

SMARTUNIFIER User Manual, Release 1.2.0

= /MORPH.[IO

SMARTUnifier Configuration {

Information Models E:

Channel Types .‘.
Communication Channels *#
Mappings &
Device Types @
Instances =[§l:]=

Deployments

Deployment Endpoints i

o User Management -

e Click the “Add User” button (2).
22 User Management o + <

UserID Email First Name Last Neme Language

admin Unifier Admin en Administrator Active 2020-07-13 00:00:00.000 V|

* In the “Add User” view you have to provide the following information (3):
— Provide a user id, first and last name
— Optionally, provide an e-mail address
— Set a preferred language for the SMARTUNIFIER Manager.

* The role defines the permission of the user. It is mandatory to assign a new user a role. The
following roles are available for use in the SMARTUNIFIER.

4.2. User Management 82

SMARTUNIFIER User Manual, Release 1.2.0

— Administrator: Full read and write access for the SMARTUNIFIER Configuration and
Administration.

— Reader: Only read access for the SMARTUNIFIER Configuration

— Writer: Read and write access for the SMARTUNIFIER Configuration
* Choose the account status: Active or Inactive.

— Active: User account is activated and ready to use.

- Inactive: User account is deactivated and cannot be used until it is activated again.
* Set an initial password for the first login of the new user.

* After all mandatory fields are filled in, click the “Save” button (4).

@ Add User o

English

Role: Writer

Administrator

0ogd

Reader
Writer

Active
Inactive O

Credentials X

contains at least 4 characters

@

4.2.3 Edit a user

This procedure describes how to edit an existing user account.

* Select the SMARTUNIFIER User Management perspective (1).

4.2. User Management 83

SMARTUNIFIER User Manual, Release 1.2.0

= /MORPH.DIo

SMARTUnifier Configuration {

Information Models E:

Channel Types .‘.
Communication Channels *#
Mappings &
Device Types @
Instances =I:I§]=

Deployments

Deployment Endpoints i

o User Management -

¢ (Click the “Edit” button (2).

22 User Management aQ + &

UseriD 4 Emai First Name Last Name Language

Role staws crestea
JohnDoez John Doe en Reader Active 20210326 00:00:00.000 o ya
4

admin Unifier Administrator en Administrator Active 2021-03-26 00:00:00.000

In the “Edit” view the user account can be redefined (3).
* update the user details: user id, first and last name, email address
* change the language
* edit the user permission: Administrator, Writer or Reader

e activate or inactivate the user account

4.2. User Management 84

SMARTUNIFIER User Manual, Release 1.2.0

* change the password

@ Edit User: John Doe

* After editing, click the “Save” button (4).

4.2.4 Delete a user

This procedure describes how to delete a user account.

* Select the SMARTUNIFIER User Management perspective (1).

4.2. User Management

85

SMARTUNIFIER User Manual, Release 1.2.0

©

¢ Click the “Delete” button (2).

22 User Management

Userio
JohnDoe2 John Doe

admin Unifier Administrator

/ZMORPH.DIo

SMARTUnifier Configuration {

Information Models E:

Channel Types .‘.
Communication Channels *#
Mappings L
Device Types EE
Instances =[§]=

Deployments

Deployment Endpoints i
User Management an

Q + o

Reader Active 2021-03-26 00:00:00.000 Va

Administrator Active 2021-03-26 00:00:00.000 Vs

Confirm by selecting the “Delete” button (3).

4.2. User Management

86

SMARTUNIFIER User Manual, Release 1.2.0

Delete user

Are you sure you want to delete this user JohnDoe2?

Cancel Delete

The user account is deleted and no more visible in the SMARTUNIFIER User Management perspec-
tive.

42 User Management Q + &
Userio Email First Name Last Name Language Role Status Created
admin Unifier Administrator en Administrator Active 2021-03-26 00:00:00.000 Va |

4.2. User Management 87

CHAPTER
FIVE

DEMONSTRATION SCENARIOS

You want to learn and get your hands on a demonstration integration scenario? Check out the

following sample demonstration uses cases:

* CSV file data to REST Server
e Insert JSON data in SQL-Database

* XML file data to MQTT with database operation

5.1 File-based data - CSV to REST-Server

5.1.1 Overview

This Scenario describes step by step how an integration of equipment data to any kind of REST-
server is done. The next steps guide you through the creation of Information Models, Channels,

Mappings, Device Types, Instances and Deployments.

pot

|{REST}

MORPH.pro
SMARTUNIFIER

SMARTUNIFIER-
Manager

Deployment

>
Repository

SMARTUNIFIER-

Instance

Mapping

| csv
O,
&0

The CSV, which represents the equipment data, in this demo scenario contains four parameters that
are all comma-delimited. Below you can find the sample data. Create a new CSV-file on your local
machine and copy and paste the sample data.

88

SMARTUNIFIER User Manual, Release 1.2.0

"PARTNR", "TIMESTAMP", "TEMPERATUR" , "PRESSURE"
"4595","2020-05-01 07:00:43","62","222"
"4596","2019-05-01 07:01:43","62","223"
"4597","2019-05-01 07:02:43","63","223"
"4598","2019-05-01 07:03:43","61","225"
"4599","2019-05-01 07:04:43","66","228"
"4600","2019-05-01 07:05:43","64","223"
"4601","2019-05-01 07:06:43","66","223"
"4602","2019-05-01 07:07:43","62","222"
"4603","2019-05-01 07:08:43","62","228"

Equipment Channel File Tailer (CSV) Mapping REST Server Channel

Reads incoming

p the REST server

Equipment Channel File Tailer (CSV) Mapping REST Server Channel

5.1.2 Information Model
CSV-file

The first step is to create an Information Model that represents the structure of your CSV-file.
What Information Models are and how to create one is described in chapter Information Models.

You can see the Information Model for the data of the CSV-file below. The Model “CsvDataModel”
has an Event “csvDemoEvent”. Inside the Event you find the same parameter as in the CSV-file.

We recommend to use the same “Group” name throughout the scenario. For example, in order to
identify the created Artifacts for this scenario the group name “demo.basiccommunication” is used
in this documentation.

@ Edit Model: demo.basi ication:CsvDataModel:1.0.0 20

I csvbataModel a <
~ E csvDemoEvent [CSVDemoEventType]

Group
demo.basiccommunication

Narme
CsvDataModel

[<1<]-]<]
3
|

Versien
1.00

CsvDataModel Information Model describing data structures of the CSV-file

5.1. File-based data - CSV to REST-Server 89

SMARTUNIFIER User Manual, Release 1.2.0

Table 1: CsvDataModel - Variables

ID Node Type Data Type

csvDemoEvent Event CSVDemoEvent

PARTNR Variable String

TIMESTAMP Variable String

TEMPERATUR Variable String

PRESSURE Variable String
REST-Server

There has to be also a second Information Model for the REST-Server.

The “RestDataModel” has a structured Variable called “RestDemoData”, which holds the variables
“Temperatur” and “Pressure”.

Since only these two values are sent from the CSV-file to the Rest Server, it is not necessary to add
the other parameters of the CSV-file.

You can see the Information Model in the screenshot below as well as the values used in the table.
o

C© Edit Model: demo.basiccommunication:RestDataModel:1.0.0

[RestDataModel
~ [RestDe

R_eGTDf“-GDS'-GT‘r‘KEE demo.basiccommunication
RestDataModel
1.00

RestDataModel Information Model describing data structures of the REST Server

Table 2: RestDataModel - Variables

ID Definition Type Member Type
RestDemoData Variable RestDemoDataType
Temperatur Variable String

Pressure Variable String

5.1.3 Communication Channel

File Tailer

Next step is to, create a Communication Channel for the CSV-file.
1.) Enter values for group, name and version like in the screenshot below.

2.) Select the model for the CSV-file as the Information Model connected to this Channel.

3.) Select “File tailer (CSV)” as the Channel Type.

5.1. File-based data - CSV to REST-Server 90

SMARTUNIFIER User Manual, Release 1.2.0

@ Add Communication Channel

demo.basiccommunication

CSVChannel

1.0 0

Description
demo.basiccommunication.CsvDataModel.1.0.0

File tailer (CSV)

REST-Server

Similar to the CsvDataModel, create a Channel for the RestDataModel.
1.) Enter values for group, name and version like in the screenshot below.
2.) Select the Model “demo.basiccommunication:RestDataModel:1.0.0”.

3.) Lastly, select as a Channel Type the “RestServer” Channel.

C© Edit Communication Channel: demo.basiccommunication:RESTServerChannel:1.0.0 (]

The configuration of the CSV-Channel, as well as the REST-Channel, is done in the section Create
Instance.

5.1.4 Mapping

After the creation of Information Models and their dependent Communication Channels create in
the next step the Mapping.

1.) Enter values for Group, Name and Version like in the screenshot below.

2.) Select the Information Models created earlier. Click the “Add” button (1) and select the Informa-
tion Model “demo.basiccommunication:CsvDataModel:1.0.0”. Enter a Name for the Information
Model, e.g., “CsvDataModel”.

3) Click again the “Add” button (1) and select the Information Model
“demo.basiccommunication:RestDataModel:1.0.0”. Enter a Name, e.g., “RestDataModel”.

4.) Next, add a Rule to the Mapping. Click the “Add Rule” button (2).

5.1. File-based data - CSV to REST-Server 91

SMARTUNIFIER User Manual, Release 1.2.0

+ Add Mapping @ [x]

Configuration Rules

|2

demo.basiccommunication
CSVToREST

100

©

CsvDataModel demo.basiccommunication:CsvDataModel:1.0.0

RestDataModel demo.basiccommunication:RestDataModel:1.0.0

5.) Enter a Name for the new Rule (1) like “CsvToRest”.

6.) As Trigger drag and drop the “csvDemoEvent” of the CsvDataModel into the Trigger field (2).
This Event is going to be triggered if any changes appear inside the CSV-file.

7.) Drag and Drop the “Temperature” and the “Pressure” variable from the “RestDataModel” as
a new Target (3)

8.) Drag and Drop the belonging variables “TEMPERATURE” and “PRESSURE” from the
“CsvDataModel” into the Source fields (4)

@ Edit Mapping: demo.basi ication:CSVToRESTMapping:1.0.0 (<]

. 0O 1 RuleConfiguration Edit code

, Socsvmessw Rule deserir
stDemoDataType]
9 CsvDataModel/csvDemoEvent x

CsvDataModel =

M csvDatan

DemoEventType]

sting] X - CsvDataModel/csvDemoEvent/ TEMPERATUR [string] X%

Sting] X = CsvDataModel/csvDemoEvent/PRESSURE [string] %

5.1.5 Device Type

Next, assign the Mapping to a new Device Type.

1.) Enter values for Group, Name and Version like in the Screenshot below.

2.) Click the “Add Mapping” button (1).

3.) Select the Mapping “demo.basiccommunication:CSVToREST:1.0.0” previously created (2).
4.) Assign the correct Channels to the Information Models (3).

5.) Save the new Device Type.

5.1. File-based data - CSV to REST-Server 92

SMARTUNIFIER User Manual, Release 1.2.0

@ Edit Device Type: demo.basiccommunication:SUDeviceType:1.0.0 (%]

demo basiccommunication
SUDeviceType

1.0.0

0 demo.basiccommunication:CSVTORESTMapping:1.0.0 -

Models Channel

CsvDataModel demo.basiccommunication:CSVChannel:1.0.0 - e

RestDataModel demo.basiccommunication:RESTServerChannel:1.0.0 -

5.1.6 Instance

Last step of this Scenario is the creation of the Instance.
1.) Select the Device Type “demo.basiccommunication:CSVDemoDT:1.0.0” previously created.

2.) Values for Group, Name and Version are already set from the Device Type. Although, we
recommend to change the Name.

@Add Instance [x]

0 demo.basiccommunication:SUDeviceType:1.0.0

demo.basiccommunication
SUDeviceType

1.00

Models Channels

GsvDataModel 0

RestDataModel

3.) Click the configuration button for the “demo.basiccommunication:CSVChannel:1.0.0” con-
figuration (2).

3.1) Set the “file path” for the location of the CSV-file on your device.
3.2) Enter a value in milliseconds for the “delay between checks” of the CSV-file for new content.
3.3) In order to tail from the end set “tailFromEnd” to true.

3.4) Set “reopenBetweenChunks” to true to close and reopen the file between reading chunks. In
this example it is set to false.

5.1. File-based data - CSV to REST-Server 93

SMARTUNIF

IER User Manual, Release 1.2.0

3.5) Since the CSV-file is comma-delimited enter , as separator

3.6) Since the values in the CSV-file each start and end with double quotation marks, enter “ as

String Delimiter.

3.7) Since the Timestamp values are not used in the CSV-file, the use of a Timestamp format is not

necessary.

fm

%% Channel Configuration: demo.scenario1:EquipmentChannel:1.0.0

M EquipmentModel
~ [csvDemoEvent [CSVDemoEventType]

File Tailer to String

c:\Projects\Source for Demo\CSV-files\Equipment csv

v
o-
E
250

Milliseconds

tailFromend
reopenBetweenChunks

CSV String to Model

Yy MM dd-HHmmss
] ignoreFirstLine

0

seconds

3.8) Select the “csvDemoEvent” node in the Information Model on
the message filter RegEx.

444 Channel Configuration: demo.basiccommunication:CSVChannel:1.0.0

Q

M csvDataModel
~ [@ esvDemoEvent [CSVDemoEventType]

File Tailer to String

CSV String to Model

< 1<]<]<]

4.) Lastly, it follows the configuration of the Rest Server Channel
4.1) Enter a value for the path prefix like “demo”.

4.2) Leave the default settings for the Rest Server Endpoint as it is
“Port” if the default is occupied.

fr

t#+ Channel Configuration: demo.basiccommunication:RESTServerChannel:1.0.0

Q7

1 RestDataModel
~ [l RestDemoData [RestDemoDataType]

REST Server

demo

localhost

8090

application/json

%

the left hand side. Enter “.*” as

. We recommend to change the

5.1. File-based data - CSV to REST-Server

94

SMARTUNIFIER User Manual, Release 1.2.0

After all steps have been executed the Instance “instance.demo.basiccommunication:DemoDTCSV:1.0.0”
is fully configured and ready for Deployment.

5.1.7 Deployment
1.) Select the Instance “instance.demo.basiccommunication:DemoDTCSV:1.0.0” previously cre-
ated.

2.) Select “Local” as Deployment Type. This deploys the Instance on the machine you are working
on.

3.) Leave “LogfileConfiguration” on “default”.

@Add Deployment (%)

demo.basiccommunication:SUinstance:1.0.0

4.) Click the “Deploy” button (1)
5.) Click the “Start” button (2)

Deployment Q + o

Group Filter < Group § Ham Version Deployment Type 9
v iemo, basiceommunication t acal Stoppe g : /0

The Instance is now running on your local machine. You can now see the data inside a Browser.
Therefore you can either show both values or only one value.

* Open any Browser and enter http://localhost:8091/demo/Variable/RestDemoData as an URL
to receive the latest values for both Pressure as well Temperature.

* Open any Browser and enter http://localhost:8091/demo/Variable/RestDemoData/Variable/
Temperatur as an URL to get the latest value for the value Temperature.

* Open any Browser and enter http://localhost:8091/demo/Variable/RestDemoData/Variable/
Pressure as an URL to get the latest value for the value Pressure.

Warning: Please note that the URL must match the naming of the prefix set in the configuration
(Step 5.1) as well as the naming of variables in the Information Model for the REST-Server.
E.g., If the custom variable RestDemoData is changed to RestDemo the url must be changed
accordingly: <http://localhost:8091/demo/Variable/RestDemoData>.

5.1. File-based data - CSV to REST-Server 95

http://localhost:8091/demo/Variable/RestDemoData
http://localhost:8091/demo/Variable/RestDemoData/Variable/Temperatur
http://localhost:8091/demo/Variable/RestDemoData/Variable/Temperatur
http://localhost:8091/demo/Variable/RestDemoData/Variable/Pressure
http://localhost:8091/demo/Variable/RestDemoData/Variable/Pressure
http://localhost:8091/demo/Variable/RestDemoData

SMARTUNIFIER User Manual, Release 1.2.0

5.2 File-based data - Insert JSON data in SQL-Database

5.2.1 Overview

This Scenario describes step by step how JSON-data can be inserted into an SQL database with the
SMARTUNIFIER.

-
= SQL Database
-—

sQ

MORPH.pro
SMARTUNIFIER

SMARTUNIFIER- SMARTUNIFIER-
Manager Instance

<>
Deployment

5.2.2 Prerequisite

JSON-file

{
"equipmentId”: "Equipment_A1234",
"orderNr"”: "Order_000101",
"materialNr”: "A1C55100",
"quality": "IO"

}

SQL-Server Database
Create Database Command: CREATE DATABASE unifier
Create Schema Command: CREATE SCHEMA dbo

Create Table Command: create table dbo.SU_DEMO_UC1_TABLE(EQUIPMENT_ID varchar(max),
ORDER_NR varchar(max), MATERIAL_NR varchar(max), QUALITY varchar(max))

Or any other SQL Database supported by SMARTUNIFIER.

5.2.3 Information Model

JSON-file

Create an Information Model that represents the structure of the JSON-file

5.2. File-based data - Insert JSON data in SQL-Database 96

SMARTUNIFIER User Manual, Release 1.2.0

Structure of the JSONFile Information Model:
* Event that represents the trigger for the Mapping
* Variables under the Event represent the key-value pairs from the JSON-file

C© Edit Model: demo.basiccommunication.uc1:JSONFile:1.0.0 (%)

~
M JSONFile . a 7

~ [2 FileEvent [FileEventType] demo.basiccommunication.uct

JSONFile

[<J<J<]<]
R

1.0.0

SQL-Database

Create an Information Model that represents the database
Structure of the Database Information Model:
* Event that represents the table of the database
* Variables under the Event represent the columns within the table

@ Edit Model: demo.basiccommunication.uc1:Database:1.0.0 [x]

~
M Database . =
~ [DatabaselnsertEvent [DatabaselnsertEventType] demo.basiccommunication.uct

Database

[<1<]<]<]
o= on

5.2.4 Communication Channel

JSON-file

In this scenario the JSON-file is processed by the SMARTUNIFIER with the build-in File Consumer
Create File Consumer Channel:

* Select the JSONFile Information Model created previously

* Select File reader (JSON) as Channel Type
Configuration:

* Specify paths to following folder:

5.2. File-based data - Insert JSON data in SQL-Database 97

SMARTUNIFIER User Manual, Release 1.2.0

InFolder

ProcessFolder

OutFolder

ErrorFolder

44 channel Confi ion: demo.basil 1munication.uc1:JSONFile:1.0.0 <

I JsonFile S
~ [EFileEvent [FileEventType]
M =cuiom ng

FileConsumer to String

temp/consumer/in

[<]<]<]

temp/consumer/process
temp/consumer/ou t
temp/consumer/error
500

UTF-8 -

Json to Model

* Select the Event to configure the FileNameFilter

444 Channel Configuration: demo.basiccommunication.uc1:JSONFile:1.0.0 o

I JsoNFile a <

~ 3 FileEvent [Fil
M =cuipmentid [String

FileConsumer to String

Json to Model

SQL Database

In this scenario the JSON-file is processed by the SMARTUNIFIER with the build-in File Consumer.
Create Database Channel:
* Select the Database Information Model created previously
* Select SqlDatabase as Channel Type
Configuration:
* Select the root node of the Information Model and configure the database access
— Select SQLServer as Type
— Enter the JdbcUrl e.g., jdbc:sqlserver://127.0.0.1:1433;databaseName=unifier

— Enter username and password of the database

5.2. File-based data - Insert JSON data in SQL-Database 98

SMARTUNIFIER User Manual, Release 1.2.0

444 Channel Configuration <>]
a 2
[patabase s SQL Database
~ [DatabaselnsertEvent [DatabaselnsertEventType]
Rl —Cu cment i:‘?' e
s
atel [Sring -
;”:i String SQLServer
10
jdbe:sqlserver://192.168.0.111:1433;databaseName=unifier
SA
* Select the Event node in the Information Model and configure the table settings
— Enable the checkbox Insert
— Enter the name for the Table as well as the Schema
<> S

44 Channel Configuration

a <

[Database
A I3 Datab rtEvent [Datat tEventType]

[V ST

SQL Database

SU_DEMO_UC1_TABLE

[<]<]<]

dbo

* Select the Variable node Equipmentld in the Information Model and configure the columns
(Repeat this step with the rest of the Variables)

— Enable the checkbox AssignDatabaseColumn
— Enter the name for the Column

<> [x)

444 Channel Configuration

Q3

M Database SQL Database

~ |5 DatabaselnsertEvent [DatabaselnsertEventType]
Equipmentid [String] .

[<]<]<]

EQUIPMENT_ID

[J Insert auto generated key from parent -

5.2.5 Mapping

Create a new Mapping with the Information Models created previously (JSONFile and Database).
Create a Rule that handles the assignment of values from the JSON-file to the database.
* Enter a Rule Name

* Drag and Drop the File Event into the Trigger field

5.2. File-based data - Insert JSON data in SQL-Database 99

SMARTUNIFIER User Manual, Release 1.2.0

* Drag and Drop the DatabaselnsertEvent into the Actions panel

* Assign source to target (Repeat for all Variables)

* Drag and Drop the Variable equipmentId from the json model into the according Source field

@ Edit Mapping: demo.basiccommunication.uc1:JsonToDB:1.0.0 (%]
Model .
json N s B T S s Rule Configuration <> &
¥ JSONFile a < M Database & DB_Insert
~ [FileEvent [FileEventType] A [DatabaselnsertEvent [DatabaselnsertEvel - “
M couiprmentg Srng! pmentid String
- Trigger Type €2
M ouz 1ty [String)
json/FileEvent X
Actions [Target <=> Source]
Send Event DatabaselnsertEvent to db o ~
db/DatabaselnsertEvent/Equipmentld [Stringl = json/FileEvent/equipmentlc [stringl <> X
db/Databaseln nt/OrderNr [String] Json/FileEvent/orderNr [String] <> X
db/DatabaselnsertEvent/MaterialNr [String] = json/FileEvent/materialNr [String] <> X
db/DatabaselnsertEvent/Quality [String] = json/FileEvent/quality [String] <> X
5.2.6 Device Type
Create a new Device Type.
* Select the Mapping JsonToDB created previously
* Assign the Channels (Database and JSONFile) to their belonging Information Model
Q

@ Edit Device Type: demo.basiccommunication.uc1:UC1_DeviceType:1.0.0

demo.basiccommunication.uct

UC1_DeviceType

demo.basiccommunication.uc1:JsonToDB:1.0.0

5.2.7 Instance

Create a new Instance

Channels
demo.basiccommunication.uc1:Database:1.0.0

demo.basiccommunication.uc1:JSONFile:1.0.0

5.2. File-based data - Insert JSON data in SQL-Database

100

SMARTUNIFIER User Manual, Release 1.2.0

* Select the Device Type UC1_DeviceType created previously
* Change the name of the Instance to UC1_Instance
* If necessary: Changes of the Channel configuration can be made

@ Edit Instance: demo.basiccommunication.uc1:UC1_Instance:1.0.0 [x]

demo.basiccommunication.uct

UC1_Instance

Models Channels

json

5.2.8 Deployment

Create a new Local Deployment
* Select the Instance UCI _Instance

* Select the Log File Configuration Info (Defines the log level)

& Edit Deployment: demo.basiccommunication.uc1:UC1_Instance:1.0.0 [x]

Debug -

Deploy and Start the Instance UCI1 Instance

Deployment Q + o0

Group Filter < Group Name Version Deployment Type

v demo basiccommunication.uct 100 Local Started

Execution

In order to insert the data of the JSON-file into the SQL database move the file into the specified
InFolder.

5.2. File-based data - Insert JSON data in SQL-Database 101

SMARTUNIFIER User Manual, Release 1.2.0

5.3 File-based data - XML, Database, and MQTT

5.3.1 Overview

This Scenario describes step by step how XML data can be send via MQTT enriched with additional
data from a database. This scenario shows also how type conversion and date formatting can be
implemented via the SMARTUNIFIER Mapping.

-
=
-—
Database | MQTT
MORPH.pro
SMARTUNIFIER
SMARTUNIFIER- SMARTUNIFIER-Instance
Manager I I
S X
Deployment
| Monitoring _ 1
| Equipment
XML
CAa

5.3.2 Prerequisites

1. Equipment Data - (XML file)

<?xml version="1.0" encoding="utf-8"7>

<ProductionResult>
<0rderNumber>P0_000001</0rderNumber>
<ProductNumber>F2PZJ55QW11</ProductNumber>

<Date>2021-03-31T0Q7:20:41.214Z</Date>

<Quality>I0</Quality>
<Quantity>5</Quantity>

</ProductionResult>

2. SQL Server (Database)
Create Table

create table DEMO_INTEGRATION_UC3_SCHEMA.CUSTOMER (MAIN_KEY bigint IDENTITY(1,1)
PRIMARY KEY, CUSTOMER_NAME nvarchar(max), ORDER_NUMBER nvarchar(max))

Insert Data

INSERT INTO DEMO_INTEGRATION_UC3_SCHEMA.CUSTOMER (CUSTOMER_NAME, ORDER_NUMBER)
VALUES ('DemoCompanyl', 'PO_000001'); INSERT INTO DEMO_INTEGRATION_UC3_SCHEMA.
CUSTOMER (CUSTOMER_NAME, ORDER_NUMBER) VALUES ('DemoCompanyl', 'PO_000002');

5.3. File-based data - XML, Database, and MQTT 102

SMARTUNIFIER User Manual, Release 1.2.0

INSERT INTO DEMO_INTEGRATION_UC3_SCHEMA.CUSTOMER (CUSTOMER_NAME, ORDER_NUMBER)
VALUES ('DemoCompany2', 'PO_000003'); INSERT INTO DEMO_INTEGRATION_UC3_SCHEMA.CUSTOMER
(CUSTOMER_NAME, ORDER_NUMBER) VALUES ('DemoCompany3', 'PO_000004');

3. MQTT Client (For testing)
Download the MQTT Explorer.

5.3.3 Information Model
Equipment

Create an Information Model that represents the structure of the XML-file.
Structure of the XML - Information Model:

* Event that represents the trigger for the Mapping. If a new file is recognized by
SMARTUNIFIER the Rule in the Mapping will be executed.

* Variables (of data type String) under the Event represent the key-value pairs from the XML-
file

@ Edit Model: demo:Equipment:1.0.0

~
M Equipment s @ °
~ [FileEvent [FileEventType] demo

Equipment

[<J<J<]<]<]

Database

Create an Information Model, which will be used for the Select query.
Structure of the Database - Information Model:
* Command which is executed once the trigger is activated.

* Parameter variable OrderNumber (of data type String) that is used in the SELECT query later
on.

* Reply variable Customer (of data type String) that holds the result of the query.

5.3. File-based data - XML, Database, and MQTT 103

http://mqtt-explorer.com/

SMARTUNIFIER User Manual, Release 1.2.0

@ Edit Model: demo:Database:1.0.0

M patabase
~ [DatabaseSelect [Command_DatabaseSelect] demo
~ () Parameters [RequestType]

B Orderiumier String

~ ([Reply [ReplyType] Database

M customer(sringl

Description

Host (MQTT)

Create an Information Model that represents the structure of the Host (in this case MQTT).

Structure of the MQTT - Information Model:

* Event which is used to trigger the transfer of the data.

e Variables:

— OrderNumber, ProductNumber, Customer, Quality - of type String.

— Quantity of type Int
— Timestamp (custom data type)
* date, time - of type String

@ Edit Model: demo:Host:1.0.0

M Host
~ [MQTTEvent [MQTTEventType] demo
B Ordertiumoer [String
B Procuctiiumber [String]
Customer [String
~ [Timestamp [TimestampType]

B Trelsring

Host

5.3.4 Communication Channel

Equipment

In this scenario the XML-file is processed by the SMARTUNIFIER with the build-in File Reader.

1. Create File Reader Channel:

* Select the Equipemnt Information Model created previously.

* Select File Reader (XML) as Channel Type.

2. Configuration:

* Specify paths to following folder:

5.3. File-based data - XML, Database, and MQTT

104

SMARTUNIFIER User Manual, Release 1.2.0

InFolder

ProcessFolder

OutFolder

ErrorFolder

444 Channel Configuration: demo:Equipment:1.0.0

M Equipment FileConsumer to String

A [FileEvent [FileEventType]

C:\Demo\EquipmentT\input

C:\Demo\Equipment1\Process

[<J<]<]<]<]

C:\Demo\Equipment1\Output
C:\Demo\Equipment1\Error
500

UTF-8

* Select the Event to configure the FileNameFilter

444 Channel Configuration: demo:Equipment:1.0.0

A Equipment
A = FileEvent [FileEventType]

FileConsumer to String

[<]<]<J<]<]

String to XML

SQL Database

1. Create a SQL Database Channel:

* Select the Database Information Model created previously.
* Select SqlDatabase as Channel Type.
2. Configuration:

* Database Connection:

— Select the database type SQLServer.

<>

<>

— Set the JDBC Url - jdbc:sqglserver://192.168.0.111:1433;databaseName=unifier

— Enter username and password.

5.3. File-based data - XML, Database, and MQTT

105

SMARTUNIFIER User Manual, Release 1.2.0

444 Channel Configuration: demo:Database:1.0.0 PN %
[Mpatab aQ <
glabase ~ SQL Database
~ [& Datab lect [Command_Datab lect]
~ () Parameters [RequestType] R
B Ordertiumper [String .
~ ©Reply ReplyType] SkQ‘LServer -
M Customer [String]
10 N

JBBC Ul
jdbc:sqlserver://192.168.0.111:1433;databaseName=unifier

* Enter the SELECT query - select CUSTOMER_NAME from DEMO_INTEGRATION_UC3_SCHEMA.
CUSTOMER where ORDER_NUMBER = ${ORDER_NUMBER}

444 Channel Configuration: demo:Database:1.0.0 <> ®
a ¢
M Database - SQL Database
A 7 Datat [Command_D 1]
~ () Parameters [RequestType]
B crdertiumber string]
~ RIYN[%??,IXIY?:], . SELECT CUSTOMER_NAME FROM CUSTOMER WHERE ORDER_NUMEER = ${ORDER_NUMBER)
e
ORDER NUMBER
* Enter the database column for the parameter OrderNumber.
444 Channel Configuration: demo:Database:1.0.0 @ ®
Q
M Database SQL Database
A [Z Datab lect [Command_Datab lect]
~ () Parameters [RequestType] e raenacemo
)4 OrderNumber :St""g ., T::’ B
~ @ Reply [ReplyType! ORDER_NUMBER
M cusomer [Sing -
* Enter the database column for the result variable Customer.
44 Channel Configuration: demo:Database:1.0.0 o X
a T
M Database SQL Database
~ & Datat lect [Command_Datat t]
~ (3 Parameters [RequestType] .
M Orderiiurmoer [String] .,i:-
~ @ Reply [ReplyType] CUSTOMER_NAVE
M Customer [String] -

MQTT

1. Create the MQTT Channel:

* Select the Host Information Model created previously.

5.3. File-based data - XML, Database, and MQTT 106

SMARTUNIFIER User Manual, Release 1.2.0

* Select MQTT (Json) as Channel Type.
2. Configuration:

* Enter the IP of the MQTT Client.

* Enter the Port of the MQTT Client.

$44 Channel Configuration: demo;Host:1.0.0 o

B Host

~ @ MQTTEvent [MQTTEventType]

MQTT to String

127.0.0.1

1884

(] Retained

[Hostnameverification

* Select the Event to enable the checkbox Producers and enter a topic name.

44 Channel Configuration: demo:Host:1.0.0 o

Q °

M Host

A [Z MQTTEvent [MQTTEventType]

B orderhumber [String

MQTT to String

[0 consumers

Customer [String
~ [Timestamp [TimestampType]

demo/order_details

Json to Model

5.3.5 Mappings
Create a Mapping with the Information Models created previously (Equipemnt, Database, and
Host).

Create a Rule that executes a the SELECT query and sends the result with the other equipment data
out via MQTT.

¢ Enter a Rule Name

¢ Select the Edit Code button.

Note: This scenario does not support the drag-and-drop functionality of the SMARTUNIFIER

5.3. File-based data - XML, Database, and MQTT 107

SMARTUNIFIER User Manual, Release 1.2.0

Mapping due to type conversion and date formatting.

* Use the following code snippet and paste it into the Rule code editor:

equipment.FileEvent mapTo { event =>

database.DatabaseSelect.execute(command => {
command.OrderNumber := event.orderNumber
CommunicationLogger.log(event, command)

}, reply => {
host.MQTTEvent.send(eventl => {

eventl.Timestamp.time := java.time.format.DateTimeFormatter.ofPattern("HH:mm:ss").

—format(java.time.OffsetDateTime.parse(event.date.value.toString))
eventl.Timestamp.date := java.time.format.DateTimeFormatter.ofPattern("dd.MM.yyyy").

—format(java.time.OffsetDateTime.parse(event.date.value.toString))

eventl.0rderNumber := event.orderNumber
eventl.ProductNumber := event.productNumber
eventl.Customer := reply.Customer
eventl.Quantity := event.quantity.tolnt
eventl.Quality := event.quality

CommunicationLogger.log(reply, eventl)

€ Edit Mapping: demo:OrderinformationToMQTT:1.0.0 X
db - O I gie . [3J I RuleConfiguration > & X
Q Q 4 e name
Database Equipment ;
] I Equip : DataToMQTT Rule description
A 7] DatabaseSelect [Command_Data ~ [FileEvent [FileEventType] 7
A () Parameters [RequestType] OrderNumb ng
OrderNumber [String| 1+ |file.FileEvent mapTo { event =>
2~ db.DatabaseSelect .execute (comnand => {
~ (3 Reply [ReplyType] 3 command.Orderhunber := event.Orderfiunber
Cus-omer [Sring 1 Communicationlogger.log(event, command)
R Se o hreply o
- mqtt. MQTTEvent. send (eventl => {
7
8 val time - java.time.format.DateTimeFormatter.ofPattern("HHimm:ss"). format(java. time.OffsetDateTine. parse(ever
9 val date = java.time.format.DateTimeFormatter.ofPattern("dd.MM.yyyy™).format(java. time.OffsetDateTime. parse(ey
10
11 eventl.Timestamp.Time := time
12 eventl.Timestamp.Date := date
13
14 eventl.OrderNumber := event.OrderNumber
15 eventl.ProductNumber := event.ProductNumber
16 eventl.Customer := reply.Customer
17 eventl.Quantity := event.Quantity.toInt
18 eventl.Quality := event.Quality
19
20 Comnunicationlogger.log(reply, eventl)
21 T
22)
23 he
2)
25 H

5.3.6 Device Type

Create a Device Type.

* Select the Mapping EquipmentToHost created previously

5.3. File-based data - XML, Database, and MQTT 108

SMARTUNIFIER User Manual, Release 1.2.0

* Assign the Channels (Equipment, Database and Host (MQTT)) to their belonging Information

Models.

@ Edit Device Type: demo:Equipment:1.0.0

demo

Equipment

Descriptior

demo:OrderinformationToMQTT:1.0.0

Models Channels

db demo:Database:1.0.0
file demo:Equipment:1.0.0
matt demo:Host:1.0.0

5.3.7 Instance

Create a Instance
* Select the Device Type created previously.

@ Edit Instance: demo:Equipment:1.0.0

demo:Equipment:1.0.0

demo

Equipment

Models Channels

file

matt

5.3.8 Deployment

Create a new Local Deployment

* Select the Instance created previously.

5.3. File-based data - XML, Database, and MQTT

109

SMARTUNIFIER User Manual, Release 1.2.0

* Select the Log File Configuration Info (This defines the log detail).

® Add Local Deployment

demo:Equipment:1.0.0 v

Info v

Deploy and Start the Instance UCI1 Instance

|
&
&

© Deployment Q
Group Name Version Deployment Type State

demo 1.0.0 Local NotDeployed

GROUP FILTER v~

Execution

In order to send the data from the equipment with the customer information via MQTT, move the
XML-file into the specified InFolder.

5.3. File-based data - XML, Database, and MQTT 110

CHAPTER
SIX

GETTING HELP

Having trouble? We’d like to help!

* In case of malfunctioning SU Instances check out the Troubleshooting section.

* Try the FAQ - it’s got answers to regularly asked questions.

* Check out the Glossary if some terminology is not clear.

6.1 Troubleshooting

6.1.1 Instance works abnormally or hangs/crashes

1.
2.

Determine if it is a HW problem on the Hardware where the SU Instance is operated on.

In case of a HW problem setup a new HW (or switch to a spare HW). Ensure to place correct
security certificates on the new HW. Perform new deployment and start of a new SU Instance
with SU Manager on the new HW.

* Time to redeploy and start SU Instance: < 2 min.

In case, the HW is operating correctly, perform the following steps:

1.
2.

Verify if SU Instance is still running or has crashed.

Save SU Instance logs and provide logs to Amorph Systems support for further analysis. Then
stop and restart the SU Instance with SU Manager. See if SU Instance is up and running again
correctly. Otherwise perform next steps.

e Time to restart SU Instance: < 30 seconds.

. Stop and perform undeploy of SU instance with SU Manager; Afterwards again deploy the SU

Instance and start the SU Instance again. See if SU Instance is running correctly. Otherwise
perform next steps.

* Time to redeploy and start SU Instance: < 2 min.

If at SU Instance’s side everything works correctly but still no correct communication takes
place, go through the next steps.

111

SMARTUNIFIER User Manual, Release 1.2.0

5.

Check all attached connection channels; see if these are running correctly by verifying SU
logs and verifying, if correct data is received or sent by the SU Instance. In case the SU
Instance sends data correctly to receivers (see SU log entries), but still communication is
not working, perform incident measures on receivers’ side. Make sure that the receivers are
working correctly. In case SU receives no data from a sender (see SU log entries), perform
incident measure on sender’s side. Make sure, the sender is providing its data in a correct
way.

. In case there is still no correct communication, contact Amorph Systems’ support for further

assistance.

6.1.2 Manager works abnormally or hangs/crashes

1.
2.

Determine if it is a HW problem on the HW where SU Manager is operated.

In case of a HW problem, setup a new HW or switch to a spare HW. Perform installation of
SU Manager and Repository from latest backup and re-start SU Manager on the new HW.

* Time to install and start SU Manager: < 3 min.

In case HW is operating correctly, perform the following steps:

1.
2.

6.2

Verify that SU Manager is still running or has crashed.

Save SU Manager logs and provide logs to Amorph Systems’ support for further Analysis.
Then stop and restart the SU Manager. See if SU Manager is running correctly. Otherwise
perform next steps.

* Time to restart SU Manager: < 30 seconds

. Perform complete uninstall of SU Manager and Repository; Perform new installation of SU

Manager and Repository from latest backup and re-start SU Manager.
* Time to re-install and start SU Manager: < 3 min.

In case there is still no correct operation of SU Manager, perform previous step with an older
backup that has proven to work correctly.

In case there is still no correct operation of SU Manager, contact Amorph Systems support for
further assistance.

FAQ

Does SMARTUNIFIER provide caching/buffering of data?

Yes, SMARTUNIFIER is capable of supporting caching of messages using file buffer (Spool) for
message transfer to external middleware like MQTT. This functionality can be provided as part of a
SMARTUNIFIER Communication Channel and dependent on the used communication protocol of
the respective channel.

6.2. FAQ 112

SMARTUNIFIER User Manual, Release 1.2.0

Is it possible to set different buffering options for different channels?

Yes, each communication channel of SMARTUNIFIER can provide a different buffer size and further
options.

Does SMARTUNIFIER enable data pre-processing, cleansing, filtering and optimization of data?

Yes, this is a core feature of SMARTUNIFIER. SMARTUNIFIER provides powerful capabilities
for any kind data preprocessing, cleansing, filtering and optimization. The capabilities of
SMARTUNIFIER in this respect range from simple calculations, unit conversions, type conversions
and reformatting up to arbitrary processing algorithms of any complexity.

Does SMARTUNIFIER enable data aggregation?

Yes, SMARTUNIFIER enables data aggregation and reformatting with any level of complexity.

Does SMARTUNIFIER provide short term data historian features?

Yes, historic telemetric data (of variable time horizons; size limited by used HW) can be mon-
itored by usage of SMARTUNIFIER’s logs which can record all communication activities of a
SMARTUNIFIER Instance incl. telemetric data. SMARTUNIFIER’s Log data can afterwards be
forwarded by usage of a dedicated Communication Channel to any (and also multiple) upper-level
monitoring or analytics system. Alternatively SMARTUNIFIER’s Logs can be accessed directly by
any external IT application (remote access to HW device is required).

Yes, SMARTUNIFIER can create any number of OPC-UA Servers and/or Clients within just one
Communication Instance.

Does SMARTUNIFIER support standard number of connections to OPC-UA Clients?

Yes, SMARTUNIFIER supports a virtually unlimited number of client connections per OPC-UA
Server. Physically the number of connections is limited by number of subscriptions per session,
number of data objects and size per subscription as well as by HW and network constraints.
SMARTUNIFIER allows to operate multiple OPC-UA Servers and/or OPC-UA Clients within each
single SMARTUNIFIER instance for northbound and/or southbound communication.

Does SMARTUNIFIER support brokering to MQTT Server?

Yes, SMARTUNIFIER supports any number of MQTT connections. One single SMARTUNIFIER
Instance can connect to one or multiple MQTT brokers (e.g., for different target systems) and is
able to communicate bi-directional.

6.2. FAQ 113

SMARTUNIFIER User Manual, Release 1.2.0

Which southbound protocols are offered with SMARTUNIFIER?

SMARTUNIFIER supports many protocols like e.g.,
* Siemens S7, S7-2
* OPC-UA
* Beckhoff
¢ MOTT
* Modbus-TCP
* file-based (different formats like CSV, XML, JSON, any binary format)
* SQL

...and many more to come continuously. Specific protocols can be provided based on customer
request. Therefore please contact Amorph Systems (www.amorphsys.com).

Does SMARTUNIFIER enable pre-aggregation of additional sensor data and/or more devices (rule
based), for e.g., temperature monitoring?

Yes, SMARTUNIFIER allows to connect any number of telemetric data sources to a SMARTUNIFIER
Instance. Rule-based pre-aggregation and pre-processing of additional sensor data is supported
with any level of complexity. This ranges from simple pre aggregation/pre-processing up to complex
utilization of advanced AI or ML algorithms.

Does SMARTUNIFIER support processing of active cloud commands? (e.g., System Manager AWS
/ AWS Agent)

Yes, SMARTUNIFIER provides a RESTful API to execute Shell Commands (e.g., Start/Stop Instance,
etc.). Thus, active cloud commands are supported. In addition, also commands from other external
IT-Systems (e.g., MES, ERP, AWS Systems Manager etc.) are possible. Furthermore if required
SMARTUNIFIER can be fully executed and operated within Cloud Environments (e.g.,, within AWS
Cloud).

Which northbound protocols are supported by SMARTUNIFIER?

SMARTUNIFIER supports many northbound protocols, like e.g.,
* OPC-UA
¢ MQTT
* WebSphere
* HTTP / REST
* any file based protocol

* SQL/any database

6.2. FAQ 114

SMARTUNIFIER User Manual, Release 1.2.0

* Splunk
* Vantiq

...and many more to come continously. Specific protocols can be provided based on customer
request. Therefore, please contact Amorph Systems (www.amorphsys.com).

Does SMARTUNIFIER support international naming standards (example: EUROMAP 77, PackML)?

Yes, SMARTUNIFIER is specifically designed to support strongly the incorporation of international
standards (e.g., EUROMAP 77, 82, 83, 84, AutomationML, PackML, DFQ, SEMI SECS/GEM etc.) as
well as company standards, by offering the capability to be able to build up specific SMARTUNIFIER
Information Models complying with these standards and incorporating full data semantics. There
will be a one-time effort to implement such a standard in SMARTUNIFIER as a respective Infor-
mation Model and afterwards this Standard can be used for any communication across the whole
customer IT Infrastructure. Also this includes flexible mapping from legacy protocols to new stan-
dard protocol and vice versa.

Does SMARTUNIFIER offer the ability to integrate with other systems and applications through
REST Server APls and Web Services for Operational purpose?

Yes, SMARTUNIFIER features a REST API for operational purpose (e.g., instance start/stop service,
configuration etc.)

Does SMARTUNIFIER offer a way to realize a flexible, configurable dataflow?

Yes, SMARTUNIFIER features a configurable and highly performant rule-based engine (SmartMap-
pings) based on different northbound and/or southbound input sources for realizing any dataflow
(workflow) that is required in industrial environments. This covers communication sequences for
identification, processing start, processing execution, processing end, results data pro-vision as
well as detailed process data provision. Also commands from any upper-level IT-System can be
processed and further transmitted to the production equipment (e.g., recipe management, NC pro-
gram transfer etc.) External data flow engines / visualization apps (e.g., Node-Red, Grafana) can
be connected.

Does SMARTUNIFIER enable Central Software Management?

Yes, all Information Models, Mappings and Deployment Features can be managed centrally. Fur-
thermore, SMARTUNIFIER features an easy to use REST API for operational purpose (e.g., instance
start/stop service, configuration etc.).

Does SMARTUNIFIER enable Container Deployment?

Yes, SMARTUNIFIER operation and deployment is fully based on Container-Technology (Docker).
SMARTUNIFIER Manager and Instances can be operated and deployed inside Docker Containers
to any End Point within the network running Docker environment.

6.2. FAQ 115

SMARTUNIFIER User Manual, Release 1.2.0

Which Operating System SMARTUNIFIER is supporting?

SMARTUNIFIER runs on Windows, Linux, Mac and other OS supporting Java RT and Docker.

Does SMARTUNIFIER support onPrem Edge-Analytics?

Yes, SMARTUNIFIER can be connected to any Edge-Analytics System SMARTUNIFIER Logs can
provide detailed information about all communication activities. These log data can either be
provided by a dedicated Communication Channel to any upper level Analytics System (in any
required format) or can be made locally accessible to any agent running locally on the HW.

Does SMARTUNIFIER support DevOps CI/CD Pipeline for installations and update?

Yes, SMARTUNIFIER supports remote installation/update of Software from SMARTUNIFIER Man-
ager via Docker Registry SMARTUNIFIER Instances (running in Docker Containers) can be up-
dated, monitored and controlled remotely. Docker registry is also accessible from external systems
if required.

Does SMARTUNIFIER enable Software Scalability?

Yes, SMARTUNIFIER is able to scale from connection of one single equipment/device to virtually
any number of equipment/devices by means of its decentralized architecture.

Does SMARTUNIFIER support the architecture of distributed systems?

Yes, SMARTUNIFIER itself is a fully distributed and scalable IT system. With this architecture
SMARTUNIFIER is able to collaborate in any small or large IT environment. SMARTUNIFIER is
open to reliably collaborate in large sites.

Does SMARTUNIFIER provide the ability to directly communicate with other Devices or IT-
Systems through standard protocols and also supports Load-Balancing?

Yes, SMARTUNIFIER is able to communicate with any other Devices or IT-Systems and also address
load balancers for optimized feeding of data to any message brokers or data forwarder.

Does SMARTUNIFIER provide the ability for data to be ingested as a consolidated batch (File Trans-
fer)?

Yes, SMARTUNIFIER is capable of using any files in any formats as input source and also as output
destination.

6.2. FAQ 116

SMARTUNIFIER User Manual, Release 1.2.0

Does SMARTUNIFIER provide the ability to create custom connectors to ingest data from arbitrary
sources?

Yes, the capability to be able to realize custom connectors for any data source is one of the core
elements of SMARTUNIFIER’s architecture.

Is SMARTUNIFIER able to push operational data to an Edge-Gateway?

Yes, SMARTUNIFIER is capable of receiving operational data from any device or IT-System and
push it to an Edge-GW. E.g., OPC-UA, MQTT and HTTP/REST are supported. Also, many other
protocols can be used therefore.

Does SMARTUNIFIER provide Software Monitoring?

Yes, each SMARTUNIFIER Instance creates detailed logs that document every communication ac-
tivity. These logs can be made accessible to any external system e.g., by a dedicated monitoring
communication channel. Moreover, SMARTUNIFIER Manager comes with a built-in Monitoring
Dashboard that allows monitoring of the distributed SMARTUNIFIER Instances.

Does SMARTUNIFIER support Monitoring integration?

Yes, this is possible; Each SMARTUNIFIER Instance creates detailed logs that document every com-
munication activity. These logs can be made accessible to any external system e.g., by a dedicated
monitoring communication channel. In addition, SMARTUNIFIER is able to send any kind of mon-
itoring message (e.g., based on status changes or other events (e.g., time triggered) to any (or
multiple) upper level monitoring system in any required format.

Does SMARTUNIFIER provide certificate handling?

Yes, SMARTUNIFIER is able to handle certificates and establish state-of-the-art secured connections
(e.g., TLS, secured MQTT, secured OPC-UA, etc.).

Is it possible with SMARTUNIFIER to limit access to data?

Yes, SMARTUNIFIER Instances work on independent Windows/Linux computer units. Data may
be stored temporarily on these HW devices as logs or for buffer (cache) purposes. This temporary
data can be protected by assigning the HW with appropriate access rights and user roles.

Does SMARTUNIFIER support services for security supervision and security monitoring?

Yes, SMARTUNIFIER creates detailed logs regarding all communication activities (and other ac-
tivities) it performs. With SMARTUNIFIER it is possible to integrate with any external security
supervision/monitoring system (e.g., Splunk) and provide on-line log files (in any required format)
to these systems by usage of a dedicated monitoring communication channel.

6.2. FAQ 117

SMARTUNIFIER User Manual, Release 1.2.0

Does SMARTUNIFIER support End-to-End transport encryption (to Northbound and South-
bound)?

Yes, SMARTUNIFIER is capable of supporting End-to-End transport encryption for southbound and
northbound communication channels.

Does SMARTUNIFIER enforce secure individual authentication for all users?

Yes, SMARTUNIFIER supports individual user authentication.

Does SMARTUNIFIER enable Windows AD / LDAP Integration?

Yes, SMARTUNIFIER is capable of integrate with Windows AD / LDAP on customer request. An
easy-to-use configuration capability will be provided soon.

Does SMARTUNIFIER support a (configurable) secure remote access?

Yes, Secure remote access to SMARTUNIFIER Manager and SMARTUNIFIER Instances is possible
by standard Windows or Linux tools (e.g., ssh).

Can SMARTUNIFIER protect unsecured Shop Floor devices from office network through isolation?

Yes, a SMARTUNIFIER Instance can be deployed locally near an equipment/device and map any
unsecured equipment/device interface into a secured protocol (e.g., OPC-UA, MQTT). This way
“unsecured data streams” coming from an equipment/device can be transferred to any northbound
system in a secured way (isolation of the equipment/device). The same principle can be also
applied when sending control parameters (e.g., screwer params, NC programs, recipes, ...) oOr
commands from a northbound system to the equipment/device.

Does SMARTUNIFIER support malware protection concepts (e.g., support of standard Anti-Virus
Software)?

Yes, SMARTUNIFIER works with any standard malware protection software incl. McAffee, NOD
and many others.

Is SMARTUNIFIER secure by design (e.g., secure coding guidelines, use of open source code, pen-
testing)?

SMARTUNIFIER was developed according state-of-the-art coding principles and on request we are
willing to let perform any checks, verifications, pen testing as required to validate the software.
Especially for realizing communication channels and implementing protocols, state-of-the-art Open
Source Libraries are used and constantly updated to the newest versions available.

6.2. FAQ 118

SMARTUNIFIER User Manual, Release 1.2.0

Does SMARTUNIFIER support a range of transmission/infrastructure protocols (e.g., IPV4/IPvé6)?

Yes, with SMARTUNIFIER (depending on used HW) IP4/IP6 are supported.
* LAN: Up to 4x Gbit Ethernet Intel i211
* Wireless LAN: 802.11ac dual antenna + BT 4.2
* Cellular communication: LTE/WCDMA/GSM/GNSS
USB: Up to 8 ports, 2x USB 3.0, Up to 6x USB 2.0
* RS232 serial port

Also other transmission/infrastructure protocols can be supported on request but may require ad-
ditional HW.

Does SMARTUNIFIER provide the ability to handle intermittent connectivity of sources
(data/event redelivery and failure modes)?

Yes, intermittent connectivity of sources can be handled by SMARTUNIFIER Communication Chan-
nels. Based on rules, data/event redelivery can take place, failure modes can be activated, and
escalation procedures to northbound systems can be triggered.

Does SMARTUNIFIER reduce unnecessary traffic on shop floor network to protect device inter-
faces from traffic overload?

Yes, a SMARTUNIFIER instance can be deployed locally nearby the equipment on any suitable HW
device. The SMARTUNIFIER instance can then be configured to communicate to the connected
southbound equipment/devices by using a separate physical network port and this way isolate the
device from unnecessary traffic coming from the northbound network.

Does SMARTUNIFIER support low Latency between Southbound and Northbound Interfaces?

Yes, SMARTUNIFIER provides high performance / low latency by its distributed architecture con-
sisting out of small SMARTUNIFIER Instances (i.e. no central bottlenecks like e.g., a middleware
broker/database). Furthermore, SMARTUNIFIER features an integrated compiler that creates na-
tive Bytecode for the interfaces to be executed within the SMARTUNIFIER Instances. This makes

the SMARTUNIFIER highly performant, since no slow scripting language nor any slow interpreter
is used to provide the connectivity functionality.

Is it possible with SMARTUNIFIER to ensure a consistent setting of time stamps for events (NTP)?

Yes, this is possible.

Is it possible to use UNICODE for operational data?

Yes, it is possible to use UNICODE with SMARTUNIFIER (e.g., for OPC-UA).

6.2. FAQ 119

SMARTUNIFIER User Manual, Release 1.2.0

Is stability of SMARTUNIFIER s API given? Is the API stable across releases?

Yes, SMARTUNIFIER is a standard product from Amorph Systems. Interface stability is given and
stable across new product releases. Furthermore interfaces are versioned and under controlled
release management (i.e. different versions of interface, Information, Models and Mappings can be
maintained and deployed in a controlled mode).

Which tools for development, deployment and error analysis can be used with SMARTUNIFIER ?

For extension, deployment and error analysis of SMARTUNIFIER (e.g., development of new Infor-
mation Models, pre-processing, aggregation etc.) widely-used and accepted state-of-the-art devel-
opment environments and powerful standard tools may be used, e.g., Eclipse, Maven/sbt, Jenkins,
Docker. For Error Analyses detailed logs created by SMARTUNIFIER can be used and analyzed with
any analytics tools.

What is the cost model of SMARTUNIFIER ?
Please refer to Amorph Systems (www.amorphsys.com) for prices for SMARTUNIFIER . In general,
the following policies apply:

* SMARTUNIFIER Manager is free of charge

* For SMARTUNIFIER Instances a yearly license fee is charged

Does Amorph Systems offer reliable support for SMARTUNIFIER ?
For many years, Amorph Systems is providing first class support and intensive care to all of its
customers. This covers all products and solutions that were delivered and operated in Industrial

Areas as well as in Air Traffic Industry. For customer references please refer to Amorph Systems
(www.amorphsys.com).

What support levels (SLAs) are supported?

Different levels of services (8x5, 8x7 up to 24x7) are available upon request from Amorph Systems
(www.amorphsys.com).

Does SMARTUNIFIER support multiple languages?

Yes, SMARTUNIFIER is capable of supporting multiple languages. Currently the GUI is available
in English and German language. In case more languages are required, please contact Amorph
Systems (www.amorphsys.com)

6.2. FAQ 120

SMARTUNIFIER User Manual, Release 1.2.0

Does Amorph Systems provide relevant training capabilities for operating SMARTUNIFIER and for
engineering of Information Models and Mappings?

Yes, SMARTUNIFIER is a simple to use standard product and was specifically designed as a power-
ful tool to enable the end customers themselves to provide seamless equipment/device as well as
IT-Systems interconnectivity within their industrial environments.

Therefore, Amorph Systems trains customers to configure, deploy and operate SMARTUNIFIER
in their environments. Moreover we can give advanced trainings, so that the customers can also
implement new interfaces, new channels, new, Information Models and new Mappings on their
own.

6.2. FAQ 121

	About SMARTUNIFIER
	What is SMARTUNIFIER
	What does SMARTUNIFIER do
	Important Use Cases with SMARTUNIFIER
	Anything-To-Anywhere IT Interface
	Reusable Interfaces and Interface Models
	Integrate Legacy Equipment
	Implement Fab Communication Scenario
	Provide Base for Remote Maintenance and Health Monitoring
	Migrate to Industry 4.0
	Allow Unlimited Scalability
	Enable Internet of Things

	Connectivity Endpoints and Data Formats
	Connectivity Endpoints / Communication Protocols
	Data Formats

	What has changed in 1.2.0

	How to integrate with SMARTUNIFIER
	Information Models
	What are Information Models
	How to create a new Information Model
	Node Types
	Data Types

	Communication Channels
	What are Channels
	How to create a new Channel
	Channel Types and Configuration

	Mappings
	What are Mappings
	How to create a new Mapping
	How to create Rules

	Device Types
	What are Device Types
	How to create a new Device Type

	Instances
	What are Instances
	How to create a new Instance

	Deployment
	What is a Deployment
	Deploy Locally
	Deploy with Docker
	Deploy with AWS Fargate
	Prerequisites
	Architecture
	Planning the Deployment
	Deployment Steps

	How to deploy, run and operate a deployed Instance
	How to deploy an Instance
	How to run an Instance
	How to stop an Instance
	How to delete a Deployment of an Instance
	How to un-deploy an Instance

	How to monitor a deployed Instance

	Administration
	Deployment Endpoints
	What are Deployment Endpoints
	Deployment Endpoints Types

	User Management
	About User Management
	Add a new user
	Edit a user
	Delete a user

	Demonstration Scenarios
	File-based data - CSV to REST-Server
	Overview
	Information Model
	Communication Channel
	Mapping
	Device Type
	Instance
	Deployment

	File-based data - Insert JSON data in SQL-Database
	Overview
	Prerequisite
	Information Model
	Communication Channel
	Mapping
	Device Type
	Instance
	Deployment

	File-based data - XML, Database, and MQTT
	Overview
	Prerequisites
	Information Model
	Communication Channel
	Mappings
	Device Type
	Instance
	Deployment

	Getting Help
	Troubleshooting
	Instance works abnormally or hangs/crashes
	Manager works abnormally or hangs/crashes

	FAQ

