
SMARTUNIFIER User Manual
Release 1.7.0

Amorph Systems GmbH

September 05, 2022

TABLE OF CONTENTS

1 About SMARTUNIFIER 2
1.1 What is SMARTUNIFIER . 2
1.2 What does SMARTUNIFIER do . 3
1.3 Important Use Cases with SMARTUNIFIER . 4

1.3.1 Anything-To-Anywhere IT Interface . 4
1.3.2 Reusable Interfaces and Interface Models . 5
1.3.3 Integrate Legacy Equipment . 6
1.3.4 Implement Fab Communication Scenario . 7
1.3.5 Provide Base for Remote Maintenance and Health Monitoring 8
1.3.6 Migrate to Industry 4.0 . 9
1.3.7 Allow Unlimited Scalability . 10
1.3.8 Enable Internet of Things . 11

1.4 Connectivity Endpoints and Data Formats . 12
1.4.1 Connectivity Endpoints / Communication Protocols 13
1.4.2 Data Formats . 15

2 How to integrate with SMARTUNIFIER 16
2.1 Information Models . 16

2.1.1 What are Information Models . 16
2.1.2 How to create a new Information Model . 17
2.1.3 Node Types . 19
2.1.4 Data Types . 24

2.2 Communication Channels . 26
2.2.1 What are Channels . 26
2.2.2 How to create a new Channel . 26
2.2.3 Channel Types and Configuration . 28
2.2.4 General Configurations . 66

2.3 Mappings . 67
2.3.1 What are Mappings . 67
2.3.2 How to create a new Mapping . 67
2.3.3 How to create Rules . 69

2.4 Device Types . 88
2.4.1 What are Device Types . 88
2.4.2 How to create a new Device Type . 89

2.5 Communication Instances . 90

i

2.5.1 What are Instances . 90
2.5.2 How to create a new Instance . 90

3 Configuration Component Management 93
3.1 Naming Convention . 93
3.2 Group Filter . 93
3.3 Component Version Control . 94

3.3.1 How to release configuration components 95
3.4 Operations . 96

3.4.1 Add . 96
3.4.2 Edit . 96
3.4.3 Apply . 97
3.4.4 Exit Editing . 97
3.4.5 Save . 98
3.4.6 Save and Close . 98
3.4.7 Search . 99
3.4.8 Sort . 100
3.4.9 Reload . 100
3.4.10 Import . 101
3.4.11 Export . 103
3.4.12 Clone . 104
3.4.13 Delete . 104
3.4.14 Bulk Action . 105

4 Deployment 108
4.1 What is a Deployment . 108
4.2 Deploy Locally . 109
4.3 Deploy with Docker . 111
4.4 Deploy with SSH . 113
4.5 Deploy with AWS Fargate . 115

4.5.1 Prerequisites . 115
4.5.2 Architecture . 119
4.5.3 Planning the Deployment . 121
4.5.4 Deployment Steps . 122

4.6 How to Deploy, Run and Operate a Deployed Instance 125
4.6.1 How to Deploy an Instance . 125
4.6.2 How to Run an Instance . 125
4.6.3 How to Stop an Instance . 125
4.6.4 How to Delete a Deployment of an Instance 126
4.6.5 How to Un-deploy an Instance . 126
4.6.6 How to Edit a Deployment of an Instance . 126

4.7 Notifications . 127
4.7.1 How to access Notifications . 127
4.7.2 How to manage Notifications . 128

4.8 How to monitor a deployed Instance . 129
4.8.1 Log Viewer . 129
4.8.2 Dashboard . 130

4.9 Additional Options . 131

ii

4.9.1 Encryption of Communication Instances . 131
4.9.2 Protect Communication Instances . 132
4.9.3 VM Arguments . 133

5 Administration 135
5.1 Active Directory Integration (ADI) . 135

5.1.1 AD Group Mapping . 136
5.2 Backup and Restore . 138

5.2.1 How to access . 139
5.2.2 Backup . 139
5.2.3 Restore . 142
5.2.4 Manager Backup . 144

5.3 Channel Types Manager . 144
5.3.1 How to access . 145
5.3.2 About Layers . 146
5.3.3 How to create a new Channel Type . 147

5.4 Docker Java Image Manager . 149
5.4.1 How to access . 149
5.4.2 Add a New Docker Java Image . 151
5.4.3 Edit a Docker Java Image . 152
5.4.4 Delete a Docker Java Image . 152

5.5 Deployment Endpoints . 152
5.5.1 What are Deployment Endpoints . 152
5.5.2 How to access . 152
5.5.3 Deployment Endpoints Types . 153
5.5.4 Deployment Endpoints States . 159
5.5.5 Deployment Endpoints Operations . 160

5.6 Credential Management . 161
5.6.1 How to access . 162
5.6.2 Add Credentials . 163
5.6.3 Edit Credentials . 164
5.6.4 Delete Credentials . 164
5.6.5 Using Credential Manager when configuring the Communication Channels . 165

5.7 User Management . 168
5.7.1 About User Management . 168
5.7.2 How to access . 168
5.7.3 Add a new user . 169
5.7.4 Edit a user . 171
5.7.5 Delete a user . 172

5.8 Logging Configurations . 173
5.8.1 How to access . 173
5.8.2 Add a new logging file . 175
5.8.3 Edit a logging file . 176
5.8.4 Delete a logging file . 177

5.9 Extensions . 177
5.9.1 OpcUa Model Import . 178
5.9.2 JSON Model Import . 183
5.9.3 AWS IoT SiteWise Model Export . 186

iii

6 Getting Help 188
6.1 Troubleshooting . 188

6.1.1 Communication Instances . 188
6.1.2 SMARTUNIFIER Manager . 190

6.2 FAQ . 192
6.3 Glossary . 201

iv

SMARTUNIFIER User Manual, Release 1.7.0

TABLE OF CONTENTS 1

CHAPTER

ONE

ABOUT SMARTUNIFIER

You are new to SMARTUNIFIER?

• Learn about the SMARTUNIFIER connectivity platform

• Learn about the connectivity use cases you can address with SMARTUNIFIER

• Check out the supported connectivity endpoints and data formats

1.1 What is SMARTUNIFIER

SMARTUNIFIER represents a powerful but very easy to use decentralized industrial connectivity
platform for interconnecting all industrial devices and IT systems including equipment, peripheral
devices, sensors/actors, MES, ERP as well as cloud-based IT systems.

SMARTUNIFIER is the tool of choice for transforming data into real value and for providing seam-
less IT interconnectivity within production facilities.

2

SMARTUNIFIER User Manual, Release 1.7.0

1.2 What does SMARTUNIFIER do

• SMARTUNIFIER provides an easy way to collect data from any Data Source and is able to
transmit this data to any Data Target.

• Data Sources and Data Targets (commonly referred to as Communication Partners) in this
respect may be any piece of equipment, device or IT system, communicating typically via
cable or Wi-Fi and using a specific protocol like e.g., OPC-UA, file-based, database, message
bus.

• With SMARTUNIFIER several Communication Partners can be connected simultaneously.

• With SMARTUNIFIER it is possible to communicate unidirectional or bidirectional to each
Communication Partner. i.e., messages and events can be sent and received at the same time.

• SMARTUNIFIER can translate and transform data to any format and protocol that is re-
quired by a certain Data Target. This includes different pre-configured protocols and formats,
e.g., OPC-UA, file-based, database, message bus, web services and many direct PLC connec-
tions. In case a certain protocol or format is currently not available it can be easily added to

1.2. What does SMARTUNIFIER do 3

SMARTUNIFIER User Manual, Release 1.7.0

SMARTUNIFIER.

• By applying so called Information Models, SMARTUNIFIER enables the same view to data
regardless of the protocol or format being used to physically connect an equipment, device or
IT system.

• A big advantage of SMARTUNIFIER is, that in many cases there is no need for coding when
providing interfaces between different Communication Partners – providing a new interface
is just drag and drop of data objects between data source(s) and destination(s).

1.3 Important Use Cases with SMARTUNIFIER

SMARTUNIFIER enables an easy and very efficient realization of many use cases that are crucial
for gaining Industry 4.0 Excellence.

In the following subchapters some of the most important SMARTUNIFIER Use Cases are described.
These give a comprehensive overview of the advanced SMARTUNIFIER Features.

1.3.1 Anything-To-Anywhere IT Interface

Easy, fast and flexible bi-directional interconnection of multiple IT systems and equipment
within a production facility.

Interconnecting heterogeneous shop floor equipment and devices with IT systems and intercon-
necting different IT systems with each other is a central requirement for a successful transition to
modern Industry 4.0 IT landscapes.

SMARTUNIFIER offers the unique capability to easily interconnect equipment and devices by al-
lowing

• any number of parallel high-speed Communication Channels between equipment, devices and
IT systems

• high-speed translation between different communication protocols and formats by applying
configurable and reusable Information Models and Smart Mappings

• flexible integration of equipment periphery

• easy integration of enterprise-specific information (e.g., equipment -location/-name/-type/-
capabilities) via configurable Enterprise Context

• riskless simulation of interfaces and communication scenarios

Results from renowned reference customers have shown that average equipment integration efforts
and cost can be reduced by up to 90% using the SMARTUNIFIER and its advanced technologies
to perform powerful IT integration by configuration instead of tedious interface programming.

1.3. Important Use Cases with SMARTUNIFIER 4

SMARTUNIFIER User Manual, Release 1.7.0

1.3.2 Reusable Interfaces and Interface Models

Reuse interface configurations multiple times with minimum effort.

When running an IT network with a higher number of installed SMARTUNIFIER Instances, all pre-
viously created interface configurations (Information Models and Smart Mappings) can be reused
easily and shared across the whole installation. This way similar equipment types are integrated
using the same connection and translation logic.

Changes and updates of interface configurations can be deployed from a centrally accessible Master
Repository, eliminating the need to touch and update each equipment or device individually

Summarized, SMARTUNIFIER allows a highly comfortable and effective management of very small
to very large IT communication environments, creating minimum overhead and letting you reach
your main goal: Excellent Manufacturing with a full Industry 4.0 IT infrastructure.

1.3. Important Use Cases with SMARTUNIFIER 5

SMARTUNIFIER User Manual, Release 1.7.0

1.3.3 Integrate Legacy Equipment

Fast adaptation of legacy communication protocols and formats to modern enterprise stan-
dards.

By applying SMARTUNIFIER configurable protocol translation (Smart Mappings), modern commu-
nication standards like OPC-UA or XML over message bus are fully supported.

SMARTUNIFIER allows a smooth migration from existing communication protocols and formats
(e.g., between existing equipment and MES) to new Industry 4.0 standards.

This unique capability of SMARTUNIFIER is realized by simply using existing communication chan-
nels simultaneously with newly introduced channels. When finishing the migration, the old chan-
nels can be switched off without any risk.

1.3. Important Use Cases with SMARTUNIFIER 6

SMARTUNIFIER User Manual, Release 1.7.0

1.3.4 Implement Fab Communication Scenario

Easily implement complete fab communication sequences that cover multiple steps.

With SMARTUNIFIER it is not only possible to give access to simple equipment or device data and
to provide „some data to MES and Cloud“, but also with SMARTUNIFIER complete communication
scenarios between equipment to upper-level IT systems can be easily implemented.

The communication scenarios can cover all steps from identification, validation, order start as well
as sending results and process data from equipment to MES or Cloud. Of course, it is also possible
to provide any parameter data (recipes) from MES or SCADA to equipment.

1.3. Important Use Cases with SMARTUNIFIER 7

SMARTUNIFIER User Manual, Release 1.7.0

1.3.5 Provide Base for Remote Maintenance and Health Monitoring

Establish new services and business models by giving secured multi-channel access to equip-
ment and device data in real-time.

Production equipment can be integrated with SMARTUNIFIER to provide direct access for equip-
ment suppliers or maintenance service providers to relevant equipment data (e.g., equipment sta-
tus, equipment key parameters) via an equipment supplier’s cloud infrastructure.

This way, new innovative business models for equipment suppliers are supported by building the
base for “Production as a Service” offerings and remote predictive maintenance.

Also, further advanced business use cases with SMARTUNIFIER are possible, e.i., by implementing
real-time equipment monitoring capabilities in a cloud environment.

Another SMARTUNIFIER use case is to give Remote Assistance to equipment suppliers to achieve
production optimization and to ensure the most efficient usage of equipment resources for cus-
tomers.

1.3. Important Use Cases with SMARTUNIFIER 8

SMARTUNIFIER User Manual, Release 1.7.0

1.3.6 Migrate to Industry 4.0

Migrate step by step to modern communication standards and apply enterprise-wide seman-
tics to data.

A key feature of SMARTUNIFIER is to open an easy way to integrate new IT systems using modern
communication protocols. This is realized by simply adding additional communication channels to
the existing legacy channels.

Another feature of SMARTUNIFIER in this respect is, that all existing IT systems with their legacy
protocols and formats can still be operated in parallel with the newly established IT systems (e.g.,
Data Lake, Advanced Analytics, Cloud).

This way, it is possible to step by step introduce modern communication standards and incre-
mentally migrate to a state-of-the-art Industry 4.0 IT architecture, but still keep the existing IT
infrastructure fully operable.

1.3. Important Use Cases with SMARTUNIFIER 9

SMARTUNIFIER User Manual, Release 1.7.0

1.3.7 Allow Unlimited Scalability

Rely on unlimited scalability from single equipment and devices to whole facilities.

SMARTUNIFIER is the first industrial connectivity platform that allows nearly unlimited virtually
scalability in terms of number of connected equipment and devices. The SMARTUNIFIER platform
can be applied for integrating one single equipment or device, but with SMARTUNIFIER hundreds
or even thousands of equipment and devices within whole facilities can be integrated to upper-level
systems or into the Cloud.

This is because SMARTUNIFIER is not a traditional middleware having a central limiting message
bus. Nor does SMARTUNIFIER contain any central performance and latency limiting database for
providing its communication features.

SMARTUNIFIER works as a distributed environment. Using advanced technologies of distributed
computing is the key for enormous scalability.

In a large installation a high number of SMARTUNIFIER Instances, each with low software foot-
print, provide the required communication capabilities. These single instances can be deployed to
any location within an enterprise IT network – on a server, on an equipment PC, within the Cloud.

1.3. Important Use Cases with SMARTUNIFIER 10

SMARTUNIFIER User Manual, Release 1.7.0

Nevertheless, the configuration of all SMARTUNIFIER Instances can be managed centrally:

• central configuration of Information Models and Smart Mappings

• central Operations Monitoring of installed SMARTUNIFIER Instances.

Thus, SMARTUNIFIER is an essential piece of Industry 4.0 for any manufacturing enterprise – al-
lowing fab-wide and enterprise-wide management of production communication and IT integration
infrastructure.

1.3.8 Enable Internet of Things

Out-of-the-box connections between equipment, devices and other IT systems to Cloud in-
frastructures.

By acting as a translator between equipment and any IOT device precise and secured access of data
consumers is possible. The easy connection to any Cloud based infrastructure is also possible (e.g.,
AWS, Azure).

1.3. Important Use Cases with SMARTUNIFIER 11

SMARTUNIFIER User Manual, Release 1.7.0

1.4 Connectivity Endpoints and Data Formats

SMARTUNIFIER provides comprehensive connectivity support for a variety of equipment, devices
and IT systems. This includes many different pre-configured communication protocols and formats.
e.g., OPC-UA, file-based, database, message bus, Webservices and direct PLC connections. Precon-
figured interfaces are available also for many standard software applications. A number of these
connectivity endpoints / communication protocols require a first time customization from Amorph
Systems for a specific customer connectivity use case. Please contact Amorph Systems for detailed
information.

1.4. Connectivity Endpoints and Data Formats 12

SMARTUNIFIER User Manual, Release 1.7.0

1.4.1 Connectivity Endpoints / Communication Protocols

The following connectivity endpoints / communication protocols are supported by
SMARTUNIFIER.

Table 1: Connectivity Endpoints

Format Description
ADLink OpenSplice Connectivity to ADLink OpenSplice middleware via Data Distribu-

tion Service (DDS)
AMQP Interface to AMQP Message Broker via Active MQ
AODB Interface to various Airport Operational Database (AODB) Systems

that support standard communications via e.g., HTTP, REST, SQL
Apache Active MQ Interface to Active MQ Message Broker
AWS Elastic Container Ser-
vice (ECS)

Interface to applications running in AWS ECS

AWS Elastic Compute
Cloud (EC2)

Interface to applications running in AWS EC2

AWS IoT Interface to AWS IoT
AWS IoT Greengrass Interface to AWS IoT Greengrass via MQTT
AWS IoT Sitewise Interface to AWS IoT SiteWise via OPC-UA
AWS CloudWatch Interface to CloudWatch
AWS DynamoDB Interface to AWS DynamoDB
AWS S3 Interface to AWS S3
AWS SNS Interface to AWS Simple Notification Service (SNS)
AWS SES Interface to AWS Simple Email Service (SES)
Barcode Reader Connectivity to any TCP/IP based barcode reader (or other identi-

fication system)
Beckhoff Interface to Beckhoff PLC via Beckhoff OPC-UA Server
CNC Connectivity to various CNC controllers (e.g., ABB, Fanuc, Heiden-

hain, Heller, Sinumerik, Traub, W&T Wiesemann & Theis)
DDS Connectivity to Data Distribution Service (DDS)
EUROMAP Connectivity of injection moulding machines via files
File Read and Write files from arbitrary directories using File Consumer

/ File Tailer
FIWARE Interface to FIWARE IoT
FTP Upload and Download files to/from FTP servers
Flink Interface to Apache Flink to enable real-time streaming
HTTP Send request to HTTP servers
HTTPS Send request to HTTPS servers
InfluxDB Interface to InfluxDB
IBM MQ Interface to IBM MQ Message Broker
In-Memory Communication via local machine
ISO-on-TCP (RFC1006) Connectivity of S7 automation devices with any com-

munication partner
JDBC Access databases through SQL and JDBC (refer to SQL Databases)

continues on next page

1.4. Connectivity Endpoints and Data Formats 13

SMARTUNIFIER User Manual, Release 1.7.0

Table 1 – continued from previous page
Format Description
JMS Send and receive messages to/from a JMS Queue or Topic using

plain JMS
Kafka Interface to Apache Kafka to enable real-time streaming
MES Interface to a Manufacturing Execution System (MES) that support

standard communications via e.g., HTTP, REST, SQL
Modbus-TCP Communication via Modbus TCP Server / TCP Client
Microsoft Azure (IoT Hub) Interface to Microsoft Azure Iot Hub via MQTT
MTConnect Communication Interface to MTConnect compliant agent applica-

tions
MQTT Connectivity by implementing MQTT Client
NoSQL Databases Cassandra, MongoDB, Hbase
OEE Interface to various Overall Equipment Efficiency (OEE) Applica-

tions that support standard communications via e.g., HTTP, REST,
SQL

OPC-UA Client Connectivity by deploying one or multiple OPC-UA Client instances
per SMARTUNIFIER Communication Instances

OPC-UA Server Connectivity by deploying one or multiple OPC-UA Server in-
stances per SMARTUNIFIER Communication Instances

PLC Connectivity to various PLCs (e.g., Allen-Bradley, B&R, FANUC,
General Electric (GE), Hilscher, Honeywell, Krauss Maffei, Mit-
subishi, Toshiba, Wago) via TCP/IP

PM Interface to a various Predictive Maintenance Systems that support
standard communications via e.g., HTTP, REST, SQL

REST Communication via REST using REST Server / REST Client (Web-
services)

SAP MII Interface to SAP MII
SAP RFC Interface to SAP via remote function call (RFC)
SAP Netweaver Interface to SAP Netweaver via HTTP
SCADA Interface to various SCADA Systems that support standard commu-

nications via e.g., HTTP, REST, SQL
SECS/GEM Communication with semiconductor or photovoltaic equipment us-

ing SECS/GEM interface protocol for equipment-to-host data com-
munications (TCP/IP).

Siemens Industrial Edge Deployment of SMARTUNIFIER Communication Instances via
Siemens Industrial Edge Platform

Siemens MindSphere
(REST)

Interface to MindSphere via REST

Siemens MindSphere
(MQTT)

Interface to MindSphere via MQTT

Siemens S7 PLC/TCP Interface to Siemens S7 1500 / 1200 / 400 / 300 via TCP protocol
Siemens S7 PLC/OPC-UA Interface to Siemens S7 1500 / 1200 via OPC-UA protocol
Smart Devices Interface to various Smart Devices (e.g., Smart Phones, Tablets)

that support standard communications via e.g., HTTP, REST, SQL
SOAP Communication via SOAP (Webservices)

continues on next page

1.4. Connectivity Endpoints and Data Formats 14

SMARTUNIFIER User Manual, Release 1.7.0

Table 1 – continued from previous page
Format Description
Splunk Interface to Splunk via HTTP Event Collector
Splunk Interface to Splunk via Metrics Interface
SQL Databases Interface to any SQL-based database like e.g., DB2, HSQLDB, Mari-

aDB, MSSQL, OracleDB, PostgreSQL, SQLServer and others
TCP Communication from/to any (binary) TCP based protocol
SFTP Upload and Download files to/from SFTP servers
UDP Communication from/to any (binary) UDP based protocol
VANTIQ Interface to VANTIQ
VIPA Speed 7 Interface to VIPA Speed 7 PLC
WAGO PLC/IP Connectivity to WAGO PLCs via OPC-UA
Websocket Interface to Websocket Server (TCP/IP)

Note: In case a customer requires to connect to other endpoints (e.g., computing devices, PLCs)
not listed in the table, please contact Amorph Systems.

1.4.2 Data Formats

The following data formats can be used in conjunction with the above defined connectivity end-
points. The possible formats for a certain connectivity endpoint may be restricted based on the
selected communication protocol. For detailed information please contact Amorph Systems.

Table 2: Data Formats
Format Description
Binary Handling of any binary communication format (e.g., fixed/variable

lengths fields, headers/footers)
CSV Handle CSV (Comma separated values) payloads
JSON Encode and decode JSON formats
TEXT Handling of any text-based communication format
XML Encode and decode XML formats

Note: In case a customer requires another data format not listed in the table, please contact
Amorph Systems.

1.4. Connectivity Endpoints and Data Formats 15

CHAPTER

TWO

HOW TO INTEGRATEWITH SMARTUNIFIER

Each integration scenario follows the same workflow, which consists out of 5 steps:

1. Information Models - describe and visualize communication related data using hierarchical
tree structures

2. Communication Channels - describe and configure the protocols needed for the scenario

3. Mappings - define when and how to exchange/transform data between Information Models

4. Device Types - define templates for Instances

5. Instances - define applications that provide the connectivity

Below you can see an example of integration scenario and the necessary steps to establish connec-
tivity with SMARTUNIFIER:

2.1 Information Models

2.1.1 What are Information Models

Within the SMARTUNIFIER an Information Model describes the communication related data that
is available for a device or IT system. One device or one IT system therefore is represented by one
Information Model. An Information Model consists of so-called Node Types. Information Models are
build up in a hierarchical tree structure, i.e., elements within the Information Model can contain
further elements. This is required to model the data structure of devices as naturally as possible.

The kind of Node Types to be used depends on the protocol of the device or IT system. Before
creating the Information Model take a look in the chapter Communication Channels to see which
Node Types the Channel you want to use is supporting.

16

SMARTUNIFIER User Manual, Release 1.7.0

2.1.2 How to create a new Information Model

Follow the steps described below to create an Information Model:

• Select the SMARTUNIFIER Information Model Perspective (1).

• You are presented with the following screen containing a list view of existing Information
Models.

• In order to add a new Information Model, select the “Add Model“ button at the top right
corner (2).

2.1. Information Models 17

SMARTUNIFIER User Manual, Release 1.7.0

• On the following screen provide the following mandatory information: Group and Name (3).

• The “Apply” button at the top right corner is enabled after all mandatory fields are filled in.
Click the button to generate a new Information Model (4).

• The newly created Information Model is now visible as a node on the left side of the screen.

• After the root model node is created, a new Information Model can be built up using definition
types.

• Perform a right click on the root model node and select “Add Node” (5). Select a Definition
Type from the dialog (6).

2.1. Information Models 18

SMARTUNIFIER User Manual, Release 1.7.0

2.1.3 Node Types

Model node types are elements within an Information Model. Model node types are variables,
properties, events, commands and also collections such as arrays and lists. Each model node type
has a Data Type that defines whether the model node type is a predefined data type or a custom
data type.

Variables

What are Variables

Variables are used to represent values. Within SMARTUNIFIER different types of Variables are de-
fined. They differ in the kind of data that they represent and whether they contain other Variables.
For example, a file Object may be defined that contains a stream of bytes. The stream of bytes
may be defined as a Data Variable that is an array of bytes. Properties may be used to expose the
creation time and owner of the file Object.

How to create a Variable

• Enter an ID (1)

• Enter a Data Type (2)

• Click the “Apply” button (3)

Properties

What are Properties

Properties are working similar to Variables. Properties can be used for XML attributes when XML-
files are subject to be processed by SMARTUNIFIER, although XML elements are still represented
by Variables in the Information Model.

2.1. Information Models 19

SMARTUNIFIER User Manual, Release 1.7.0

How to create a Property

• Enter an ID (1)

• Enter a Data Type (2)

• Click the “Apply” button (3)

Events

What are Events

SMARTUNIFIER is an event-driven software. In this context an event is an action or occurrence rec-
ognized by SMARTUNIFIER, often originating asynchronously from an external data source (e.g.,
equipment, device), that may be handled by the SMARTUNIFIER. Computer events can be gen-
erated or triggered by external IT systems (e.g., received via a Communication Channel), by the
SMARTUNIFIER itself (e.g., timer event) or in other ways (e.g., time triggered event). Typically,
events are handled asynchronously with the program flow. The SMARTUNIFIER software can also
trigger its own set of events into the event loop, e.g., to communicate the completion of a task.
Each event defined in an Information Model has an event type.

An event type consists of one or multiple simple or structured variables. Clients subscribe to such
events to receive notifications of event occurrences.

How to create an Event

• Enter an ID (1)

• Enter a Data Type for the Event. e.g., “MyFirstEventType” (2)

• Click the “Apply” button (3)

Within the Event Variables, Arrays or Lists can be added. Follow the steps below to add a Variable:

2.1. Information Models 20

SMARTUNIFIER User Manual, Release 1.7.0

• Right click the Event node, select “Add Node” and choose a Definition Type (4)

• Enter an ID (5)

• Enter a Data Type (6)

• Click the apply button (7)

• Click the “Save” button at the top right corner (8) to save the Information Model

Commands

What are Commands

Commands are functions, whose scope is bound by an owning Information Model, like the methods
of a class in object-oriented programming. Commands within an Information Model are typically
invoked by an external IT system (e.g., an equipment) that triggers the command. In addition,
commands of a target Information Model (e.g., an MES) can be triggered by the SMARTUNIFIER
through a Mapping. A command contains one or multiple simple or structured Variables. Also a
command has a return parameter that likewise can be a simple or complex data type.

The lifetime of the command invocation instance begins when the client calls the command and
ends when the result is returned. While commands may affect the state of the owning model, they
have no explicit state of their own. In this sense, they are stateless. Each command defined in an
Information Model has a command type

2.1. Information Models 21

SMARTUNIFIER User Manual, Release 1.7.0

How to create a Command

• Enter an ID (1)

• Click the “Apply” button (2)

The main two parts of a Command are the Request, referred to as Parameters within the
SMARTUNIFIER, and the Reply. Variables, Arrays and Lists can be added to both of these com-
mand parts.

Follow the steps below to add a Variable to Parameters:

• Select the Parameters node from the tree (3)

• Enter a Data Type (4)

• Click the “Apply” button (5)

• Select the Reply node from the tree (6)

• Enter a Data Type (7)

• Click the “Apply” button (8)

Follow the steps below to add nodes under the Parameter and Reply node:

• Right click the Parameter node, select “Add Node” and choose a Definition Type (9)

2.1. Information Models 22

SMARTUNIFIER User Manual, Release 1.7.0

• Enter an ID (10)

• Enter a Data Type (11)

• Click the “Apply” button (12)

• Click the “Save” button (13) to save the Information Model

Arrays

What are Arrays

Arrays allow to hold a fixed size collection of elements, which have all the same data type. The size
of the array must be defined in the configuration of the Information Model.

How to create an Array

• Enter an ID (1)

• Select a Data Type for the Array by clicking the Data Type Drop-Down (2)

• Enter the size of the Array (3)

• Click the “Apply” button (4)

2.1. Information Models 23

SMARTUNIFIER User Manual, Release 1.7.0

Lists

What are Lists

Lists allow to hold a collection of elements (Variables), which can each have different data types.

How to create a List

• Enter an ID (1)

• Enter a Data Type for the List. E.g., “String” (2)

• Click the “Apply” button (3)

2.1.4 Data Types

There are two kinds of Data Types:

• Predefined Types e.g., String, Integer, Boolean and more. (Note: Only available for the
definition types - Variables, Properties, Arrays, Lists)

• Custom Types

How to create a Variable as a Simple Type

• Add a new Variable, enter an ID and select a primary data type for the Data Type e.g., “String”
(1)

2.1. Information Models 24

SMARTUNIFIER User Manual, Release 1.7.0

Table 1: Predefined Data Types
Type Definition
Boolean true or false
Byte 8 bit signed value (-27 to 27-1)
Int 32 bit signed value (-231 to 231-1)
String Sequence of characters
Char 16 bit unsigned Unicode character (0 to 216-1)
Double 64 bit IEEE 754 double-precision float
Float 32 bit IEEE 754 single-precision float
Long 64 bit signed value (-263 to 263-1)
Short 16-bit signed integer
Array Mutable, indexed collections of values.
List Class for immutable linked lists representing ordered collections of elements.
LocalDate Immutable date-time object that represents a date, often viewed as year-month-

day.
LocalDate-
Time

Immutable date-time object that represents a date-time, often viewed as year-
month-day-hour-minute-second.

LocalTime Immutable date-time object that represents a time, often viewed as hour-minute-
second.

OffsetDate-
Time

Immutable representation of a date-time with an offset.

How to create a Variable as a Custom Type

• Add a new Variable, enter an ID and enter a custom name for the Data Type e.g., “MyFirst-
ComplexVariableType” (1)

• Select the Custom Variable - “MyFirstComplexVariableType” - and add a new Variable under-
neath it (2)

Note: Model Node Types with custom data types can be easily duplicated throughout the Informa-
tion Model by selecting the same custom data type for a new model node type.

Data Types for Properties, Arrays and Lists can be defined as shown above for Variables.

2.1. Information Models 25

SMARTUNIFIER User Manual, Release 1.7.0

2.2 Communication Channels

2.2.1 What are Channels

Communication Channel or simply Channel refers to a transmission medium. A Channel is used
to convey information from one or several senders (or transmitters). Communicating data from
one location to another requires a pathway or medium. These pathways are called Communication
Channels, and the information is transmitted with the help of communication protocols. Each
Information Model can have one Channel or many, and each model can choose which Channels
it subscribes to. The information is transmitted through the Communication Channels in both
directions: from the external system to the SMARTUNIFIER application and vice versa.

2.2.2 How to create a new Channel

Follow the steps below to create a new Channel:

• Go to the Communication Channels perspective by clicking the “Communication Channels”
button (1)

2.2. Communication Channels 26

SMARTUNIFIER User Manual, Release 1.7.0

• To create a new Channel, select the “Add Channel” button at the top right corner (2)

• The creation of a Communication Channel is split up into two parts. First enter basic infor-
mation about the new Communication Channel

– Fill in the information for the Channel identifier such as: Group, Name and Version.
Description is optional (3)

– Besides that, associate the Channel with an Information Model (4)

– Select the type this Channel represents from the Drop-Down (5). A list of available
Channel Types and a description of how to configure each of them can be found below

2.2. Communication Channels 27

SMARTUNIFIER User Manual, Release 1.7.0

• Click the “Save” button (6) to save the Channel

2.2.3 Channel Types and Configuration

There are several Channel Types available with SMARTUNIFIER. The supported Communication
Channel Types are listed in the chapter Connectivity Endpoints / Communication Protocols. If a spe-
cific Communicating Channel Type is not available in this product version, please contact Amorph
Systems. In many cases the provision of a specific Communication Channel Type can be provided
as extension to the standard product.

The configuration of the Communication Channels can be done on Channel, Device Type and In-
stance level.

Note: Important to note is that the configuration of a Channel can be overwritten accordingly.
For example: The configuration done in the Communication Channel view can be changed in the
Device Type or Instance view.

The following paragraphs lay out the configuration process of selected Channel Types. If the Chan-
nel Type you want to use is not described, please contact Amorph Systems for configuration guid-
ance.

File-based

File Reader

Characteristics

• File Reader monitors a specified folder - the so-called input folder

• If a file is inserted the following actions take place:

– The Trigger of the specified Rule in the Mapping is activated

– Thus, the Rule is executed

• After successful execution of the rule the file is moved into a so-called output folder

• In case of an exception the file is moved into an error folder

2.2. Communication Channels 28

SMARTUNIFIER User Manual, Release 1.7.0

Supported File Formats:

• CSV

• JSON

• XML

Information Model Requirements

The first Node after the root node must be of type Event .

CSV

• The node after the Event must be of type List - multiple lines, each representing a data
record.

• Fields, which are separated by commas, are represented by the Node Type Variable . Note
that the order of fields in the CSV file must match the order of Variables in the Information
Model.

XML

• Elements of the XML file are represented by the Node Type Variable .

• Attributes of the XML file are represented by the Node Type Property . In order to assign
attributes to elements in the Information Model, the element Node Type must be a Custom
Data Type.

How to use File Reader with CSV

1. Select File reader (CSV) from the Drop-Down.

2. Click the Configure button.

2.2. Communication Channels 29

SMARTUNIFIER User Manual, Release 1.7.0

3. Make sure the root model node is selected to configure the File Consumer to String as well
as the CSV String to Model.

4. File Consumer to String - Configuration

• Enter a path for the input folder - In Folder

• Enter a path for the process folder - Process Folder

• Enter a path for the output folder - Out Folder

• Enter a path for the error folder - Error Folder

• Specify the Polling interval and select the Unit

• Select the CharSet according to the file in use

5. CSV Consumer to Model - Configuration

• Enter the Separator which is used in the CSV-file

• If needed, set String delimiter, EOL delimiter and the Timestamp format

• If the CSV file contains a header enable Ignore first line

• Specify the Polling interval and select the Unit

2.2. Communication Channels 30

SMARTUNIFIER User Manual, Release 1.7.0

6. Specify the Event used by selecting the event node in the tree on the left side

Note: The entries of a CSV-File can only be mapped directly to an Event object and its parameters.

7. File Consumer to String - Configuration

• Enable the Event checkbox for the File Name Filter

• Enter a Regular expression in order to determine which file is to be processed in the
input folder

8. Csv String to Model - Configuration

• Enable the Event checkbox for the Csv Model Configuration

• Start of processing

– If the entire content of the file is processed on this event enter a wildcard in the
RegEx field

– If the processing starts at a specific line enter a regular expression in the RegEx field
to identify the line

9. Click the Apply button, then the Close button and save the Channel by clicking the Save
button

2.2. Communication Channels 31

SMARTUNIFIER User Manual, Release 1.7.0

Description of configuration properties:

Property Description Example
Separator Separator type, used in the csv file , , ;
Delimiter Values that have an additional delimiter like

“Date”, “Time”
"

Eol Delimiter Defining Carriage return and/or Line Feed \r, \n
Timestamp for-
mat

Format of the timestamp YYYY-MM-DD HH:mm:ss

ignoreFirstLine Delay between checks of the file for new con-
tent in milliseconds

true, false

TailFromEnd Set to true to tail from the end of the file, false
to tail from the beginning of the file

true, false

InFolder Path leading to the Input Folder C:\FileConsumer\In

OutFolder Path of a node in the Information Model C:\FileConsumer\Out

ErrorFolder Regular Expression for the message filter used
in the implementation

C:\FileConsumer\Error

CharSet Encoding of the file in use UTF-8, UTF-8 BOM, etc
ProcessFolder Regular Expression for the message filter used

in the implementation
C:\FileConsumer\Process

File Tailer

Characteristics

• File Tailer monitors a given file in a given location.

• Data is processed line by line.

• Note that the File Tailer does not support the definition type List in the Information Model.

Supported File Formats:

• CSV

2.2. Communication Channels 32

SMARTUNIFIER User Manual, Release 1.7.0

• JSON

• XML

Information Model Requirements

The first Node after the root node must be of type Event .

CSV

• Fields, which are separated by commas, are represented by the Node Type Variable . Note
that the order of fields in the CSV file must match the order of Variables in the Information
Model.

XML

• Elements of the XML file are represented by the Node Type Variable .

• Attributes of the XML file are represented by the Node Type Property . In order to assign
attributes to elements in the Information Model, the element Node Type must be a Custom
Data Type.

How to configure the File Tailer (CSV) Channel

1. Select File tailer (CSV) from the Drop-Down.

2. Click the Configure button.

3. Make sure the root model node is selected to be able to configure the File Tailer to String
and CSV String to Model.

2.2. Communication Channels 33

SMARTUNIFIER User Manual, Release 1.7.0

4. File Tailer to String - Configuration:

• Enter the File path for the CSV-file on your machine

• Specify the Polling interval and select the Unit

• Enable Tail from end if you want to pick up always the last line of the file

• Enable Reopen between chunks if the file should be closed and reopened between
chunks

• Select the Charset according to the file in use

5. CSV String to Model - Configuration:

• Enter the Separator which is used in the CSV-file as well as the String delimiter

• Input the Eol delimiter and the Timestamp format if one is used.

• If the CSV file contains a header enable Ignore first line

• Input the Polling interval and select the Unit

6. Select the event node in the tree on the left side.

Note: The entries of a CSV-File can only be mapped directly to an Event object and its parameters.

7. Check the Routes checkbox.

2.2. Communication Channels 34

SMARTUNIFIER User Manual, Release 1.7.0

8. Enter a Regular expression for the message filter.

9. Click the Apply button, then the Close button and save the Channel by clicking the Save
button on the upper right corner.

Description of configuration properties:

Property Description Example
Separator Separator type, used in the csv file , , ;
Delimiter Values that have an additional delimiter like “Date”, “Time” "

Eol Delimiter Defining Carriage return and/or Line Feed \r, \n
Timestamp for-
mat

Format of the timestamp YYYY-MM-DD
HH:mm:ss

File Path to the csv file C:\test.csv

Delay Millis Delay between checks of the file for new content in mil-
liseconds

250

TailFromEnd Set to true to tail from the end of the file, false to tail from
the beginning of the file

true, false

ReopenBe-
tweenChunks

If true, close and reopen the file between reading chunks true, false

routes Path of a node in the Information Model true, false
messageFilter-
RegEx

Regular Expression for the message filter used in the im-
plementation

.*

Databases

InfluxDB

Characteristics - InfluxDB

In case of a time series data use case where you need to ingest data in a fast and efficient way you
can use InfluxDB.

Information Model Requirements

Inserts using Events

2.2. Communication Channels 35

https://www.influxdata.com/

SMARTUNIFIER User Manual, Release 1.7.0

• The node after the root model in this case is of the type Event which represent a database
table.

• Fields are represented by Variables .

Inserts using Custom Data Types

• Complex Variables (ModuleA) represents Measurements

• Variables underneath within the complex variable (Temperature) represents Fields

• Arrays can be used to set use an index

How to configure InfluxDB

1. Select the root model node in the tree on the left.

2. Configure the InfluxDB.

• Enter the URL to the database

• Enter the Database name

• Enter the database Username and Password or select it from the Credentials Manager

2.2. Communication Channels 36

https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#field
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#measurement
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#field

SMARTUNIFIER User Manual, Release 1.7.0

• Enter the Batch size - writes data in batches to minimize network overhead when writing
data to InfluxDB

• Enter the Flush interval and select the Unit - if data should be written every 10 seconds
enter a flush interval of 10000ms

Event Configuration

3. Select the event node

4. Enable the checkbox to configure the event

• Enter the Measurement - if it differs from the event name

• Enter Tags - comma separated

Configuration of Tags

5. Select the variable which should be a Tag

6. Enable Extended configuration

• Enter a Name - if it differs from the variable name

• Enable the checkbox IsTag

2.2. Communication Channels 37

SMARTUNIFIER User Manual, Release 1.7.0

Configuration of fields

7. Select the variable which should be a field

8. Enable Extended configuration

• Enter a Name - if it differs from the variable name

• Leave the checkbox IsTag disabled

Array Configuration

9. Select the Array

10. To configure the Array select Extended Configuration

• (Optional) Enter an Index name

• (Optional) Enter a Field name if the event node name differs from the actual name in In-
fluxDB.

• (Optional) Enter Tags separated by commas e.g., (location=NewYork, street=xxx)

2.2. Communication Channels 38

SMARTUNIFIER User Manual, Release 1.7.0

Description of configuration properties:

Property Description Example
URL Database URL and port http://127.0.0.1:8086

DB Name Database name InfluxDB

Credentials Database credentials None

Batch size Data written in batches 1000

Flush interval Interval to write data 10

Measurement Name of the measurement stored in influxdb WeatherData

Tag names Optional tag to be added to the measurement Type=Station

SQL Database

Characteristics - SQL Database

• The SQL Channel can be configured for the following two scenarios:

– Inserting data

– Updating data

– Retrieving data

• When inserting values into the database please note that “infinity” values are converted au-
tomatically into “null” values.

Information Model Requirements

Insert/Update

• The node after the root model node must be of type Event which represent a database table.

• In case of relational databases: Tables which are dependent on each other require a List .

• Columns of databases are represented by Variables .

2.2. Communication Channels 39

SMARTUNIFIER User Manual, Release 1.7.0

Select

• The Command defines that after a request is made, a reply with a result is expected.

• Parameters within a Command represent a collection of query parameter - query parame-
ters are defined as Variables .

• Reply within a Command represents the result of the Command - results are defined as
Variables .

How to configure the SQL-Database

1. Select the root model node in the tree on the left.

2. Configure the database connection

• Select the Database type.

• Specify a Reconnection interval.

• Enter the database connection URL for the specific database type.

– DB2: jdbc:db2:server:port/database

– HSQLDB: jdbc:hsqldb:file:databaseFileName;properties

– ORACLE: jdbc:oracle:thin:prodHost:port:sid

– PostgreSQL: jdbc:postgresql://host:port/database

– SQLServer: jdbc:sqlserver://[serverName[\instanceName][:portNumber]][;
property=value[;property=value]]

– MariaDB: jdbc:(mysql|mariadb):[replication:|loadbalance:|sequential:|aurora:]/
/<host>[:<portnumber>]/[database][?<key1>=<value1>[&<key2>=<value2>]]

• Enter the database Username and Password or select it from the Credentials Manager.

2.2. Communication Channels 40

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/java/src/tpc/imjcc_r0052342.html
http://www.hsqldb.org/doc/2.0/guide/dbproperties-chapt.html#dpc_connection_url
https://docs.oracle.com/cd/B28359_01/java.111/b31224/jdbcthin.htm
https://jdbc.postgresql.org/documentation/80/connect.html
https://docs.microsoft.com/de-de/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver15
https://mariadb.com/kb/en/about-mariadb-connector-j/

SMARTUNIFIER User Manual, Release 1.7.0

Description of configuration properties:

Property Description Example
Type Type of the database MariaDB, SQLServer, ORACLE,

HSQLDB, DB2, PostgreSQL
ReconnectInterval Time to reconnect if connec-

tion fails
10 (in milliseconds)

JdbcUrl Url to connect to database
• jdbc:sqlserver:

//localhost:1433;
databaseName=unifier;
trustServerCertificate=
true

• jdbc:mariadb://
localhost:3306/unifier?
connectTimeout=5000

• jdbc:db2://127.0.0.1:
50000/TESTDB

• jdbc:hsqldb:file:
\protect\T1\
textdollardbFileName;
shutdown=true

• jdbc:oracle:thin:
@localhost:1521/
MYCDB

• jdbc:postgresql://127.0.
0.1:5432/postgres

Username and password Credentials of the database

Note: The configuration of specific information model nodes differs whether you want to perform
an insert or an select statement on the database. Inserting data into the database requires an

2.2. Communication Channels 41

jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:mariadb://localhost:3306/unifier?connectTimeout=5000
jdbc:mariadb://localhost:3306/unifier?connectTimeout=5000
jdbc:mariadb://localhost:3306/unifier?connectTimeout=5000
jdbc:db2://127.0.0.1:50000/TESTDB
jdbc:db2://127.0.0.1:50000/TESTDB
jdbc:hsqldb:file:\protect \T1\textdollar dbFileName;shutdown=true
jdbc:hsqldb:file:\protect \T1\textdollar dbFileName;shutdown=true
jdbc:hsqldb:file:\protect \T1\textdollar dbFileName;shutdown=true
jdbc:hsqldb:file:\protect \T1\textdollar dbFileName;shutdown=true
jdbc:oracle:thin:@localhost:1521/MYCDB
jdbc:oracle:thin:@localhost:1521/MYCDB
jdbc:oracle:thin:@localhost:1521/MYCDB
jdbc:postgresql://127.0.0.1:5432/postgres
jdbc:postgresql://127.0.0.1:5432/postgres

SMARTUNIFIER User Manual, Release 1.7.0

event node whereas selecting data requires a command node in the Information Model.

Select Statement

3. Select the command node in the tree on the left.

4. Check the Custom Query checkbox and enter the SQL Query.

5. Each variable under Parameters and Reply needs to be assigned to a database column. Select
the variable node under Parameters and in the tree select what needs to be configured.

6. Check the Assign database column checkbox and enter the Column name as it is defined in
the used database.

Insert Statement

1. Select the event node in the tree on the left.

2. Check the Insert checkbox and enter the Table name. If required enter a Schema name.

2.2. Communication Channels 42

SMARTUNIFIER User Manual, Release 1.7.0

Protocols

MQTT

Characteristics - MQTT

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). To learn more
about the standard visit the MQTT website.

Information Model Requirements

• The first Node after the root node must be of type Event .

• The following Node Types can be used under the Event Node:

– Variables with a Simple Data Type represents the key-value pairs.

– Variables with a Custom Data Type represent objects that can contain key-value pairs.

– With Lists you can aggregate multiple variables.

• In case of publishing a topic, the Information Model determines the structure of the payload.

• In case of subscribing to a topic make sure that the Information Model structure matches the
payload.

Configuration - MQTT Channel

1. Select the MQTT (JSON) as Channel Type.

2. Click the Configure button.

3. Select the root model node

4. Configure the MQTT To String configuration:

• Enter Host and Port of the MQTT Broker used

• If required, adjust the default values for Reconnect interval, Connection timeout, Keep
alive interval and the Unit for each

• Specify a path to a folder on your local machine. The temp directory inside the SMAR-
TUNIFIER Manager can be used as well.

2.2. Communication Channels 43

https://mqtt.org/

SMARTUNIFIER User Manual, Release 1.7.0

• (Optional) Specify a Client ID

• Set the Quality of Service (QoS)

• (Optional) Enable Retained if required

• Select Username and password in order to manually enter the credentials or select
Username and password credentials reference to add it from the Credentials Manager.
If there are no credentials needed (e.g., test.mosquitto.org) select None.

5. Select the event node in the tree on the left.

6. Enable either Producer or Consumer depending on the use case and enter a Topic name.

7. Click the Apply button.

The Producer or Consumer option can be enabled for a Variable node.

2.2. Communication Channels 44

SMARTUNIFIER User Manual, Release 1.7.0

Json To Model Event Configuration

This configuration is used when some keywords or reserved words can’t be used in the Information
Model.

1. Select the event node in the tree on the left.

2. Check the box for the Events configuration.

3. Input the Field name, representing the reserved word.

4. Click on the Apply button.

Json To Model Variable Configuration

1. Select a variable in the tree on the left.

2. Check the box for the Variable configuration.

3. Input the Field name, representing the reserved word.

4. Click on the Apply button.

2.2. Communication Channels 45

SMARTUNIFIER User Manual, Release 1.7.0

Certificates

Encrypted connection using TLS security is supported. Follow the steps below to encrypt the con-
nection.

1. Enable Hostname Verification (optional)

2. Enable the Tls Configuration checkbox

• Enter the path to the CA (certificate authority) certificate of the CA that has signed the
server certificate

Note: Make sure the CA certificate is valid.

3. Enable the Client checkbox

• Enter the path to the Client certificate. The client certificate identifies the client just like the
server certificate identifies the server.

• Enter the path to the Private client key.

• If applicable select to enter a Password or to add from the Credentials Manager.

• Select the Protocol from the Drop-Down.

Disconnected Buffer

In case the connection is lost, messages can be buffered offline when the Disconnected Buffer is
enabled. Follow the steps below to enable the DisconnectedBuffer.

1. Enable the Disconnected Buffer checkbox.

2. Set the Buffer size - defines the number of messages being hold e.g., 5000.

3. (Optional) Enable Persist Buffer.

4. (Optional) Enable Delete Oldest Message.

2.2. Communication Channels 46

SMARTUNIFIER User Manual, Release 1.7.0

Description of configuration properties:

Property Description Example
host URL of the MQTT Broker. test.

mosquitto.org

port Port of the MQTT Broker. 1883

reconnectInter-
val

Time interval to reconnect to the MQTT Broker after loss of
connection in seconds

5

connection-
Timeout

Time interval the connection times out in seconds 60

keepAliveInter-
val

Time the session persists in seconds 60

persistence-
Folder

Path to a folder for the persistence store of the MQTT temp

clientId Identifies an MQTT client which connects to an MQTT Bro-
ker

MyClientID

username Client username Username

password Client password Password

hostnameVeri-
fication

Hostname Verification true, false

tls Encryption true, false
producers Data producer true, false
consumer Data consumer true, false
protocol TLS protocol version TLSv1.1,

TLSv1.2

disconnected-
Buffer

Offline buffering of data true, false

bufferSize Amount of message allowed in the buffer 5000

persistBuffer Buffer persistence true, false
deleteOld-
estMessage

Delete oldest message in buffer true, false

2.2. Communication Channels 47

SMARTUNIFIER User Manual, Release 1.7.0

Modbus

Characteristics - Modbus

MODBUS is an application-layer messaging protocol, positioned at level 7 of the OSI model. It
provides client/server communication between devices connected on different types of buses or
networks. To learn more about the standard visit the MODBUS website.

Information Model Requirements

• The following Node Types can be used to model a register:

– Variables with a Simple Data Type.

– Variables with a Custom Data Type.

Configuration - Modbus

1. Select Modbus/Tcp Client as Channel Type.

2. Click the Configure button.

3. Make sure the root model node is selected to configure the Modbus/TCP Client

4. Enter the IP address and the port

5. (Optional) Change the Connect interval if needed

6. (Optional) Change the Reconnect interval if needed

7. (Optional) Change the Receive interval if needed

2.2. Communication Channels 48

https://www.modbus.org/specs.php

SMARTUNIFIER User Manual, Release 1.7.0

8. Select the complex variable node

9. Enable the checkbox TCP Client connection configuration

10. (Optional) Enable Autorefresh to specify the retrieval rate

11. Select the Function Code

12. (Optional) Change the Max update interval if needed

13. Select the complex variable node

14. Enable the checkbox Variables configuration

15. Select the Data type

16. (Optional) Enter the register address

Note: If address is left empty, SMARTUNIFIER assumes that the Information Model structure is

2.2. Communication Channels 49

SMARTUNIFIER User Manual, Release 1.7.0

in line with the register addresses.

Description of data type format:

Data Type Size Range
BYTE, USINT, UInt8 8 Bit 0 - 255

WORD, UINT, UInt16 16 Bit 0 - 65.535

DWORD,UDINT, UInt32 32 Bit 0 - 4.294.967.295

LWORD,ULINT, UInt64 64 Bit 0 - 2^64-1

SINT, Int8 8 Bit –128 - 127

INT, Int16 16 Bit –32.768 - 32.767

DINT, Int32 32 Bit –2.147.483.648 - 2.147.483.647

LINT, Int64 64 Bit –2^63 - 2^63-1

REAL, Float32 32 Bit -3,402823e+38 - 3,402823e+38

LREAL, Float64 64 Bit -1,7976931348623158e+308 - 1,7976931348623158e+308

Description of configuration properties:

Property Description Exam-
ple

IP Client IP localhost

Port Client port 502

Connection timeout Time interval the connection times out 60

Reconnect interval Time interval to reconnect to the client after loss of connec-
tion

5

Receive interval TCP/IP receive timeout 50

Autorefresh Automatic polling of Modbus server 2

Read function code Function code used for reading variables from a modbus
server

FC04

Max update interval Minimum time between requests to the Modbus server (if
autorefresh is not used)

60

Variable configuration
Type

Format of variable DWORD

Variable configuration
Address

Address of the variable on the modbus server 0

2.2. Communication Channels 50

SMARTUNIFIER User Manual, Release 1.7.0

OPC-UA

Characteristics - OPC-UA

OPC (Open Platform Communications) enables access to machines, devices and other systems in a
standardized way. To learn more about the standard visit the OPC-UA website.

Information Model Requirements

• The following Node Types can be used to model data structures:

– Variables with a Simple Data Type.

– Variables with a Custom Data Type.

2.2. Communication Channels 51

https://opcfoundation.org/about/opc-technologies/opc-ua/

SMARTUNIFIER User Manual, Release 1.7.0

Configuration - OPC-UA Client

1. Select OPC-UA Client as Channel Type.

2. Click the Configure button.

3. Make sure the root model node is selected to configure the OPC-UA Client

4. Enter an Application name

5. Configure the serverTcpConfiguration

• Enter an Ip Adress

• Enter the Port

• Define an Endpoint

• Set a Request timeout

6. Configure the defaultSubscriptionAttribute

• Define a Publishing interval and select the Unit

7. Configure monitoringParameters

• Set a Sampling interval and the Unit

2.2. Communication Channels 52

SMARTUNIFIER User Manual, Release 1.7.0

• Enter a Queue size

• Enable Discard oldest depending on the use case

8. Enable Subscription Groups depending on the use case

9. Input the Group name

10. Define a Publishing interval and select the Unit

11. Set a Sampling interval and the Unit

12. Enter a Queue size

13. Enable Discard oldest depending on the use case

14. Select the complex variable node.

15. Enable the Node configuration

2.2. Communication Channels 53

SMARTUNIFIER User Manual, Release 1.7.0

16. Assign OPC-UA data block variables to corresponding variables in the Information Model by
selecting the variable in the tree

17. Assign data block

• Enable the Nodes configuration checkbox

• Enter the Node Id

Description of configuration properties:

Property Description Example
IP Address Client IP 127.0.0.1

Port Client port 4840

Endpoint path Service name at the server endpoint demo

Publishing inter-
val

Interval in which Notification Messages are sent 1

Sampling inter-
val

Sampling interval of monitored items 10

Queue size Max number of messages stored in the publish
queue

1

Node id Id of the item s='DB_Processing_Module'

REST

Characteristics - REST

Representational state transfer (REST) is a software architectural style that describes a uniform
interface between decoupled components in the Internet in a Client-Server architecture. To learn
more about the standard visit the REST section in Wikipedia website.

2.2. Communication Channels 54

https://en.wikipedia.org/wiki/Representational_state_transfer

SMARTUNIFIER User Manual, Release 1.7.0

Configuration - REST Server

The following sample configuration shows how variables can be made accessible over a REST server.

1. Select the root model node in the tree on the left.

2. Enter a path prefix.

3. Configure the REST Server endpoint.

• Enter the IP.

• Enter the port.

• Enter the Content-Type.

4. Check the webapp checkbox and provide the WAR-file if you want to host an application.

5. Click the Apply button and save the Channel by clicking the Save button on the upper right
corner.

Description of configuration properties:

Property Description Example
pathPrefix Prefix for the URL e.g., demo

Port Port of the REST server e.g., 9002, 9000, ...

IP IP address of the REST server http://localhost

DefaultCon-
tentType

Is used to indicate the media type
of the resource

application/json, application/xml,
text/html, text/csv

webapp Possibility to host an application true, false

2.2. Communication Channels 55

SMARTUNIFIER User Manual, Release 1.7.0

Configuration - REST Client

The following sample configuration shows a GET request using url parameters.

1. Select the root model node in the tree on the left

2. Select the content type - defines the media type of the associated representation

3. Set the wait timeout

4. Select the Command node

5. Enable the Command routes checkbox for the configuration of the following fields:

• Enter the URL - If URL parameters are used then add each parameter in the following
syntax ${id}

• Select the HTTP method.

6. (Optional - Headers) Enable the checkbox Headers for the configuration of the following
fields:

• Enter the name of the header

• Enter the value

7. (Optional - Headers) You can add multiple header entries by clicking the Add button

8. (Optional - Headers) Headers can be deleted by clicking the delete button

2.2. Communication Channels 56

SMARTUNIFIER User Manual, Release 1.7.0

9. (Optional - Authentication) Enable the checkbox Authentication for the configuration of the
following fields:

• Select the Type of the Authentication

• Enter the Username and Password or select it from the Credentials Manager

1. (Optional - URL Parameters) Select a custom variable and enable the command routes check-
box

2. (Optional - URL Parameters) Enable the command routes for the configuration of the fol-
lowing fields:

• Select the Content Type

• (Optional) Enter a Field Name in case the Information Model Node is not matching the
REST API

2.2. Communication Channels 57

SMARTUNIFIER User Manual, Release 1.7.0

Description of configuration properties:

Property Description Example
URL URL of the REST API. http://localhost:8081/api/

v1/dataPoint/${id}

HttpMethod HTTP method for the action performed
by the Client.

GET, POST, PUT

HeaderName and
Header Value

To provide server and client with addi-
tional information

Retry-After: 12

Default Content
Type

Is used to indicate the media type of the
resource.

application/json

RouteHeaderConfig-
uration

Headers represent the meta-data asso-
ciated with the API request

Name, Value

Authentication Type Type of the Authentication Basic, Digest, Kerberos, NTLM,
SPNEGO

Content Type of Pa-
rameter Nodes

Type of the Parameter Parameters, Body, Header,
None

Field Name For non-matching Information Model
nodes and API spelling

String

WaitTimeoutDura-
tion

Timeout in seconds until request is fail-
ing

10

SECS/GEM

Characteristics - SECS/GEM

The SECS/GEM is the semiconductor’s equipment interface protocol for equipment-to-host data
communications. In an automated fab, the interface can start and stop equipment processing,
collect measurement data, change variables and select recipes for products. To learn more about
the standard visit the SECS/GEM section in Wikipedia website.

Information Model Requirements

• The first Node after the root node can be of type Event , Command or Variable

• The following Node Types can be used under the Event Node:

2.2. Communication Channels 58

https://en.wikipedia.org/wiki/SECS/GEM

SMARTUNIFIER User Manual, Release 1.7.0

– Variables with a Simple Data Type represents the key-value pairs.

– Variables with a Custom Data Type represent objects that can contain key-value pairs.

Configuration - SECS/GEM Client

1. Select Secs Gem Client as Channel Type.

2. Click the Configure button.

3. Make sure the root model node is selected to configure the SECS/GEM Client

4. Enter the device configuration:

• input the equipment-to-host Ip address

• type in the TCP Port for the communication

• input the Device Id

5. Enter the Data Formats

• Input CEID - format for event Ids

• Enter RPTID - format for report Ids

• Input ALID - format for alarm Ids

2.2. Communication Channels 59

SMARTUNIFIER User Manual, Release 1.7.0

6. Input timeout for:

• T3 - Reply Timeout in the HSMS protocol.

• T5 - Connect Separation Timeout in the HSMS protocol used to prevent excessive TCP/IP
connect activity by providing a minimum time between the breaking, by an entity, of a TCP/IP
connection or a failed attempt to establish one, and the attempt, by that same entity, to initiate
a new TCP/IP connection.

• T6 - Control Timeout in the HSMS protocol which defines the maximum time an HSMS
control transaction can remain open before a communications failure is considered to have
occurred. A transaction is considered open from the time the initiator sends the required
request message until the response message is received.

• T7 - Connection Idle Timeout in the HSMS protocol which defines the maximum amount of
time which may transpire between the formation of a TCP/IP connection and the use of that
connection for HSMS communications before a communications failure is considered to have
occurred.

• T8 - Network Intercharacter Timeout in the HSMS protocol which defines the maximum
amount of time which may transpire between the receipt of any two successive bytes of a
complete HSMS message before a communications failure is considered to have occurred.

2.2. Communication Channels 60

SMARTUNIFIER User Manual, Release 1.7.0

7. Select the logging type for the required Node Types:

• Check the Enable box

• Check the Log Data box

8. Click on the Apply button

9. Select the Event node to configure the event context

10. Click to check the Events box

2.2. Communication Channels 61

SMARTUNIFIER User Manual, Release 1.7.0

11. Enter the event context Id which will trigger the event in the Information Model

12. Click on the Apply button

13. Select the variable in the tree

14. Click to check the variables box and configure the Secs variable context

• select the variable Type

• enter the variable Id

• click the Is SV box to check if the variable is a SV

• input the variable Name

Description of configuration properties:

Property Description Example
Ip IP address of the Equipment http://localhost

Port TCP port for the communication 5000

Device Id Id of the equipment NJ-300

CEID Format for event Ids U4

RPTID Format for report Ids U4

ALID Format for alarm Ids U4

Timeouts Time interval the connection times out in milliseconds 45000

T3 Reply timeout in the HSMS protocol 10000

T5 Connect Separation Timeout in the HSMS protocol 5000

T6 Control Timeout in the HSMS protocol 10000

T7 Connection Idle Timeout in the HSMS protocol 5000

T8 Network Intercharacter Timeout in the HSMS protocol 10000

Id Id of the equipment event which will trigger the event E32

Type Type of variable U1

Id Variable Id V56

Type Commands - Type of the message S2F41

Id Commands Id C33

RCMD Name of command if it is different from the command Id C1

2.2. Communication Channels 62

SMARTUNIFIER User Manual, Release 1.7.0

AWS SiteWise IoT

Characteristics - AWS IoT SiteWise

The AWS IoT SiteWise Channel enables you to send data directly to assets measurements via the
AWS IoT SiteWise API.

Information Model Requirements

• The first Node after the root node can be of type Event or Variable .

• The following Node Types can be used under the Event Node or Variable Node:

– Variables with a Simple Data Type represent measurements.

– Variables with a Custom Data Type represent asset models.

• The following measurement data types can be used when creating a variable of a Simple Data
Type:

– String

– Int

– Double

– Boolean

2.2. Communication Channels 63

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/ingest-api.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/asset-properties.html#measurements
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-asset-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/measurements.html

SMARTUNIFIER User Manual, Release 1.7.0

Note: Make sure that the Information Model is available in the AWS IoT SiteWise service. You can
use the AWS SiteWise extension in order to export an SMARTUNIFIER Information Model to AWS
IoT SiteWise.

Configuration - AWS IoT SiteWise

The following sample configuration shows how a AWS IoT SiteWise Channel is created.

1. Select AWS Sitewise as Channel Type.

2. Click the Configure button.

2.2. Communication Channels 64

SMARTUNIFIER User Manual, Release 1.7.0

3. Enter the SiteWise configuration:

• Enter the group of the Information Model

• Enter the name of the Information Model

• Enter the profile from the credential file that should be used

• Enter the region of the AWS Iot SiteWise service you are using

Description of configuration properties:

Property Description Example
Group name Information Model group name demo

Model name Information Model name Analytics

Credentials Profile Profile from the credential file default

AWS Region Region of the AWS Iot SiteWise service eu-central-1

2.2. Communication Channels 65

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/guide_credentials_profiles.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

SMARTUNIFIER User Manual, Release 1.7.0

2.2.4 General Configurations

These configurations apply for all Communication Channel Types.

Framework Configuration

The Framework Configuration enables insights into data handled by Mapping Rules. If enabled,
logs will be generated once Rules are triggered and executed. These logs are visible then by default
in the INFO Log Level as well as in the Log Viewer.

The following Framework Logging Configurations are available:

• Stateful Variable

• Stateless Variable

• Event

• Command

For each configuration there are two ways to use logging:

• Enable: Logs out information about the Node Type that was executed by the Rule.

• Log Data: Logs out in JSON-format the actual data of the Node Type that was executed by a
Rule.

2.2. Communication Channels 66

SMARTUNIFIER User Manual, Release 1.7.0

Event Logging

To use the Event Logging enable the checkbox EventLogging and for more detailed logging Event-
DataLogging.

Event Logging Output

[INFO] - EventDefinition - Received Event: /Model/bcdbbfd3-cdbe-4ade-8a73-
→˓3788e6815c46/Event/ReleaseOrder

Event Data Logging Output

[INFO] - EventDefinition - Received Event: /Model/bcdbbfd3-cdbe-4ade-8a73-
→˓3788e6815c46/Event/ReleaseOrder={"Quantity":10,"ProductNumber":"Mv5","OrderNumber":
→˓"Ord154","EquipmentId":"4-SWC2"}

2.3 Mappings

2.3.1 What are Mappings

Mappings represent the SMARTUNIFIER component that define when and how to ex-
change/transform data between two or multiple Information Models. In other words, it is acting as
a translator between the different Information Models. One Mapping consists of one or multiple
Rules. A Rule contains a Trigger, which defines when the exchange/transformation takes place, and
a list of actions that are defining how the exchange/transformation is done.

2.3.2 How to create a new Mapping

Follow the steps below to create a new Mapping definition:

• Go the Mappings perspective by clicking the “Mappings” button (1)

2.3. Mappings 67

SMARTUNIFIER User Manual, Release 1.7.0

• Following screen containing a list view of existing Mappings is displayed

• In order to add a new Mapping, select the “Add Mapping” button at the top right corner (2)

• On the following screen provide the following mandatory information: Group, Name, Version
and a Description which is optional (3)

• Click the “Add Model” button (4)

• Select the Information Model for this Mapping and enter a name for it (5)

2.3. Mappings 68

SMARTUNIFIER User Manual, Release 1.7.0

• “Remove Model” button (6) removes the Model

• After all mandatory fields are filled in, the “Save” button at the top right corner is enabled.
Click the button to submit the new Mapping (7)

• The newly created Mapping is now visible in the list view

2.3.3 How to create Rules

Follow the steps described below to create Rules:

• Select the “Edit” button (1).

• Select the “Add Rule” button at the top right corner (2).

• Two options are available:

– Single Rule

– Multi Rule

Note: Make sure to select single rule if you want to build up a rule using the code editor!

2.3. Mappings 69

SMARTUNIFIER User Manual, Release 1.7.0

Graphical

How to create a Rule

Follow the steps described below to create Rules:

• Select the “Edit” button (1).

• Select the “Add Rule” button at the top right corner (2).

• Two options are available:

– Single Rule

– Multi Rule

2.3. Mappings 70

SMARTUNIFIER User Manual, Release 1.7.0

Single Rule

• The following screenshot shows the Single Rule Editor. The Rule contains the following
components: Name, Trigger and the Action with it’s Source to Target assignments.

Note: The Single Rule includes only one Trigger.

• Enter “Rule name” (3).

• Select the “Trigger Type” (4):

– Tree Member - rule with an Information Model tree member as trigger

– Fixed Rate Scheduler - rule with a time based trigger, using a Cron Expression

– Fixed Delay Scheduler - rule based on a scheduled delay

Trigger Types

Tree Member

• Drag and drop the Trigger from the model panes (1) into the trigger field (2).

2.3. Mappings 71

SMARTUNIFIER User Manual, Release 1.7.0

Fixed Rate Scheduler

• Input a “Cron Expression” (1) to set the time based trigger. (E.g., 0 */5 * ? * * meaning the
trigger is set at every 5 minutes).

Fixed Delay Scheduler

• Input the trigger “Initial start Delay” (1), the “Period” delay (2) and the “Unit” (3).

Actions

• Drag and drop the Target Information Model node (5) into the Target field (6).

A popup appears to select the assignment type:

• Simple - the assignment is made at the Information Model node level

2.3. Mappings 72

SMARTUNIFIER User Manual, Release 1.7.0

• Complex - the assignment is made at the Information Model node children’s level

Simple Assignment

• Drag and drop the Source Information Model node (7) into the Source field (8). The Source
and the Target node data type must be matched one on one (e.g., DemoEventType to Demo-
EventType).

Complex Assignment

• Drag and drop the Source Information Model node children’s (7) one by one into the Source
field (8). The Source and the Target information must be matched one on one (e.g., String
to String).

• After all mandatory fields have been filled out, select the “Apply” button (9) to save the newly
created Rule.

• The Single Rule Editor is closed and the newly created Rule is displayed in the Rules List.

• Select the “Save” button placed in the upper right corner to save the Mapping.

2.3. Mappings 73

SMARTUNIFIER User Manual, Release 1.7.0

Actions with Conditions

• Click on the “Add condition block” button (1).

• Drag and drop a tree member (2) and (3).

• Select the condition operator (4).

• To add multiple conditions (5) select the block operator (6).

• Click on the “Literal Node” button (7) to use as a definition node a value (e.g., Integer)
instead of a tree member.

• Input a value (8).

• Select the condition operator (9).

2.3. Mappings 74

SMARTUNIFIER User Manual, Release 1.7.0

• Click on the “Add Condition Block” button (10) to add a new one.

• Click on the “Delete Condition Block” button (11) to remove a condition block and select the
“Delete” button (12) to remove the condition.

In the “THEN” (13) section, drag and drop the Target and Source Information Model nodes, using
either the simple or the complex assignment.

2.3. Mappings 75

SMARTUNIFIER User Manual, Release 1.7.0

Actions with Custom Conditions

• Click on the “Source Code” button (1).

• Input code for a complex condition (2).

• For the “THEN” section use drag and drop or click the “Source Code” button (3) to input
code.

2.3. Mappings 76

SMARTUNIFIER User Manual, Release 1.7.0

Multi Rule

• The following screenshot shows the Multi Rule Editor. The Rule contains the following com-
ponents: Name and the Actions with it’s Source to Target assignments.

Note: The Multi Rule configuration considers each Source as a Trigger.

• Enter “Rule name” (3).

• Drag and drop the Source Information Model nodes (4) one by one into the Source field (5).

• The Source and the Target information must be matched one on one (e.g., String to String).
Allowed nodes for Source and Target: Simple Variables and Variables from a Complex Vari-
able.

• After all mandatory fields have been filled out, select the “Apply” button (6) to save the newly
created Rule.

• The Multi Rule Editor is closed and the newly created Rule is displayed in the Rules List.

• Select the “Save” button (7) placed in the upper right corner to save the Mapping.

2.3. Mappings 77

SMARTUNIFIER User Manual, Release 1.7.0

Code-based Rules

More complex scenarios, which are currently not supported by the graphical view can be imple-
mented via the code editor in the Scala programming language. Similar to Mappings via drag and
drop, there is no knowledge of the underlying communication protocol (e.g., MQTT, OPCUA, etc.)
needed. Protocols are hidden behind the corresponding Information Models.

Basics - Rule construct

A Rule is always starting with a Trigger (1). The Trigger can represent a Variable, an Event or a Com-
mand; within one of the selected Information Models. After the trigger call mapTo (2) and define
the function body by adding curly braces (3). Depending on the Trigger declare the TriggerInstance
(4). Depending on the type of the Trigger use the naming accordingly:

The Source (5) is the content of the TriggerInstance (e.g., In case the Trigger is a Variable, then
is the Source an Instance of that Variable) In order to assign the Source to the Target, add the :=
operator (6). The Target can be any variable you want to map to (7).

Trigger Types

Rule Scheduler

Rules can be scheduled to run continuously at a fixed rate. Instead of having an element of the
Information Model defined as a Trigger the fixedRateScheduler method can be used. Therefor
define the Trigger as the following: _trigger.fixedRateScheduler(<Cron Expression>) (line 2).

Listing 1: Scheduled Rule

1 def rule_ScheduleNode(): Unit = {
2 _trigger.fixedRateScheduler("0/1 * * * * ? *") mapTo(() => {
3 model1.StringVariable := model2.StringVariable

(continues on next page)

2.3. Mappings 78

https://www.scala-lang.org/

SMARTUNIFIER User Manual, Release 1.7.0

(continued from previous page)

4 })
5 }

Same Type Assignments

When both target and source nodes are of the same data type the assignment of variables can be
shorten:

Listing 2: Type Assignment with Events

1 event1 := event2

Logging

Logging can be added in the Rule implementation by calling - CommunicationLogger.log (line 5)

Listing 3: Rule with Logging

1 EquipmentModel.Alarm mapTo {variable =>
2 MesModel.EquipmentAlarm.send(event => {
3 Try {
4 event.EquipmentId := EnterpriseModel.EquipmentName
5 CommunicationLogger.log(variable, event)
6 }
7 })
8 }

Compiling

You can compile the code for the selected Rule by clicking the “Compile” button (1) and check for
compilation errors before saving the Rule.

2.3. Mappings 79

SMARTUNIFIER User Manual, Release 1.7.0

Examples

Variable to Event Mapping

In this case the mapping of the Complex Variable CurrentOrder in the EquipmentModel and of a
Simple Variable in the EnterpriseModel to the EquipmentNewOrderStart Event in the MesModel is
described.

• Trigger: EquipmentModel.StartNewOrderFlag (line 1)

• TriggerInstance of EquipmentModel.Alarm: variable (line 1)

• Since values are assigned to an Event, call the function - send, on the EquipmentNewOrder-
StartEvent (line 2) and define the TriggerInstance - event (line 2).

• The Targets are defined by entering the path of the variables in the event -
event.EquipmentId (line 4).

Listing 4: Rule - StartOrder - Variable/Event

1 EquipmentModel.Alarm mapTo {variable =>
2 MesModel.EquipmentAlarm.send(event => {
3 Try {
4 event.EquipmentId := EnterpriseModel.EquipmentName
5 event.OrderNr := EquipmentModel.CurrentOrder.OrderNr
6 event.MaterialID := EquipmentModel.CurrentMaterialID
7 event.AlarmInfo := EquipmentModel.AlarmInfo
8 CommunicationLogger.log(variable, event)
9 }

10 })
11 }

Event to Variable Mapping

In this case the mapping of values inside the TransferNewOrder Event from the MesModel into
variables from the EquipmentModel is described.

• The Trigger is defined by entering the path of the Event - MesModel.TransferNewOrder (line
1). Since an Event is used as Trigger, the TriggerInstance is named accordingly - event (line
1).

• In the function body provide the Complex Variable NewOrder and the Simple Variable NewME-
SOrderFlag with data from the MesModels TransferNewOrder Event.

• Targets are defined by entering the path of the variables like - Equipment-
Model.NewOrder.OrderNr (line 3).

• In order to assign values to OrderNr, MaterialNr and Quantity of the Complex Variable
NewOrder, enter the TriggerInstance event followed by the variable name of the Transfer-
NewOrder Event - event.OrderNr (line 3).

2.3. Mappings 80

SMARTUNIFIER User Manual, Release 1.7.0

• In this case it is also possible to provide the variable NewMesOrderFlag with a Boolean like -
true (line 6).

Listing 5: Rule - TransferNewOrder - Event/Variable

1 MesModel.TransferNewOrder mapTo { event =>
2 Try {
3 EquipmentModel.NewOrder.OrderNr := event.OrderNr
4 EquipmentModel.NewOrder.MaterialNr := event.MaterialNr
5 EquipmentModel.NewOrder.Quantity := event.Quantity
6 EquipmentModel.NewMESOrderFlag := true
7 }
8 }

Commands Mapping

The following scenario describes a Rule mapping incoming data from a file to MQTT. When
the FileEvent is triggered - the rule executes first the DatabaseCommand to retrieve data from a
database.

• Trigger is defined by entering the path of the Event - file.FileEvent (line 1). Since an Event
is used as Trigger, the TriggerInstance should be named accordingly - event (line 1).

• Inside the function body execute a Command. The execution of a Command is defined by
entering the path of the Command. At the end of the path, call the execute function (line 2).
The TriggerInstance is named accordingly - command (line 4).

• The lines 4-6 show the first part of the Command. Here assign values from the source model
to the Command Parameters.

• Since every Command has a Reply, we need to define the reply section - (line 8).

• In this case send out the data over MQTT after the data is retrieved from the database. In
the reply function body, enter the path of the MqttEvent. Since this is the 2nd Event, the
TriggerInstance can be named - event1 (line 1).

• Inside the function body assign values from the FileEvent (line 11-13) as well as from the
Reply (line 14-15) to the MqttEvent.

Listing 6: Rule - File2MqttWithDB - Event/Commands

1 file.FileEvent mapTo {event =>
2 database.DatabaseCommand.execute(command => {
3 Try {
4 command.orderNr := event.orderNr
5 command.materialNr := event.materialNr
6 CommunicationLogger.log(event, command)
7 }
8 }, reply => {

(continues on next page)

2.3. Mappings 81

SMARTUNIFIER User Manual, Release 1.7.0

(continued from previous page)

9 mqtt.MqttEvent.send(event1 => {
10 Try {
11 event1.Quality := event.quality
12 event1.OrderNr := event.orderNr
13 event1.MaterialNr := event.materialNr
14 event1.Customer := reply.customer
15 event1.Product := reply.product
16 CommunicationLogger.log(reply, event1)
17 }
18 })
19 })
20 }

Mapping with Lists

The following scenario describes a Rule that is mapping incoming data from a file to MQTT. The
MQTT Model contains a List called DataList. Note that lists can only be mapped in the code view.

• Create a variable listItem that holds a reference of a newItem in the DataList (line 6)

• Call the variable from the listItem and assign the value from the file event (line 8)

2.3. Mappings 82

SMARTUNIFIER User Manual, Release 1.7.0

Listing 7: Rule - FileToMQTT - Lists

1 csv.FileEvent mapTo { event =>
2

3 event.items.foreach { item =>
4 mqtt.MqttEvent.send(event1 => {
5 Try {
6 val listItem = event1.DataList.newItem
7

8 listItem.Timestamp := item.Timestamp
9 listItem.Pressure := item.Alarmlevel

10

11 CommunicationLogger.log(event, event1)
12 }
13 })
14 }
15 }

Target Source Combinations

A Rule is defined by its elements: Trigger, Target and Source. Each element is a node assigned from
an Information Model.

The possible combinations between Target and Source are independent of the Trigger Type. There
are two kinds of assignments:

Simple

When Source and Target are of the same data type they can be directly assigned to one another.

Sample Assignments:

Based on the combinations of a Rule elements, all the scenarios are listed in the table below.

2.3. Mappings 83

SMARTUNIFIER User Manual, Release 1.7.0

Trigger Target Source
Any Source node Any Target node Any Source node
Fixed Rate Scheduler
Fixed Delay Scheduler

Complex

When Source and Target differ in the data type their children nodes have to be assigned individually.

Sample Assignments:

Based on the combinations of a Rule elements, all the scenarios are listed in the table below.

Trigger Target Source
Variable of a custom type Variable Variable

Variable of a custom type
List
Array

Custom type Variable Variable
Variable of a custom type
List
Array

Variable of a custom type Variable
Variable of a custom type
List
Array

Event Variable
Variable of a custom type
List
Array

Command Variable
Variable of a custom type
List
continues on next page

2.3. Mappings 84

SMARTUNIFIER User Manual, Release 1.7.0

Table 2 – continued from previous page
Trigger Target Source

Array
List Variable

Variable of a custom type
List
Array

Array Variable
Variable of a custom type
List
Array

Variable Variable Variable
Variable of a custom type
List
Array

Custom type Variable Variable
Variable of a custom type
List
Array

Variable of a custom type Variable
Variable of a custom type
List
Array

Event Variable
Variable of a custom type
List
Array

Command Variable
Variable of a custom type
List
Array

List Variable
Variable of a custom type
List
Array

Array Variable
Variable of a custom type
List
Array

Property of a custom type Variable Variable
Variable of a custom type
List
Array

Custom type Variable Variable
Variable of a custom type
List
Array
continues on next page

2.3. Mappings 85

SMARTUNIFIER User Manual, Release 1.7.0

Table 2 – continued from previous page
Trigger Target Source

Variable of a custom type Variable
Variable of a custom type
List
Array

Event Variable
Variable of a custom type
List
Array

Command Variable
Variable of a custom type
List
Array

List Variable
Variable of a custom type
List
Array

Array Variable
Variable of a custom type
List
Array

Property Variable Variable
Variable of a custom type
List
Array

Custom type Variable Variable
Variable of a custom type
List
Array

Variable of a custom type Variable
Variable of a custom type
List
Array

Event Variable
Variable of a custom type
List
Array

Command Variable
Variable of a custom type
List
Array

List Variable
Variable of a custom type
List
Array

Array Variable
continues on next page

2.3. Mappings 86

SMARTUNIFIER User Manual, Release 1.7.0

Table 2 – continued from previous page
Trigger Target Source

Variable of a custom type
List
Array

Command Variable Variable
Variable of a custom type
Variable of a Command
List
Array

Custom type Variable Variable
Variable of a custom type
Variable of a Command
List
Array

Variable of a custom type Variable
Variable of a custom type
Variable of a Command
List
Array

Event Variable
Variable of a custom type
Variable of a Command
List
Array

Command Variable
Variable of a custom type
Variable of a Command
List
Array

List Variable
Variable of a custom type
Variable of a Command
List
Array

Array Variable
Variable of a custom type
Variable of a Command
List
Array

Event Variable Variable of a custom type
Variable of an Event
Variable
List
Array

Custom type Variable Variable of a custom type
Variable of an Event
continues on next page

2.3. Mappings 87

SMARTUNIFIER User Manual, Release 1.7.0

Table 2 – continued from previous page
Trigger Target Source

Variable
List
Array

Variable of a custom type Variable of a custom type
Variable of an Event
Variable
List
Array

Event Variable of a custom type
Variable of an Event
Variable
List
Array

Command Variable of a custom type
Variable of an Event
Variable
List
Array

List Variable
Variable of a custom type
Variable of an Event
List
Array

Array Variable
Variable of a custom type
Variable of an Event
List
Array

2.4 Device Types

2.4.1 What are Device Types

With SMARTUNIFIER Device Types it is possible to have multiple Communication Instances, which
share common configuration parameters. A Device Type contains one or multiple Mappings. Each
Mapping contains one or multiple Information Models and its associated Communication Channel.
Within a SMARTUNIFIER Device Type it is possible to over-write existing Communication Channel
configurations. Device Types are especially important, when integrating several similar pieces of
equipment or devices. In this case, the Device Type can be reused for all Instances (i.e., one instance
represents one equipment).

2.4. Device Types 88

SMARTUNIFIER User Manual, Release 1.7.0

2.4.2 How to create a new Device Type

Follow the steps described below to create a SMARTUNIFIER Device Type.

• Select the SMARTUNIFIER Device Type Perspective (1).

• Click on the “Add Device Type” button in the upper right corner (2).

2.4. Device Types 89

SMARTUNIFIER User Manual, Release 1.7.0

• The creation of a Device Type is split up into two parts. First provide the basic information
about the Device Type like the Group, the Name, and the Version. Optionally, provide a short
description (3).

• In the next step provide one or multiple Mappings previously created. To do so click the “Add
Mapping” button (4). After selecting a Mapping (5) the associated Information Models show
up. In case the wrong Mapping was selected click the “Delete Mapping” button to remove the
Mapping from the Device Type (6). Now select a Communication Channel for each Information
Model from the Drop-Down (7).

• Similar to the Communication Channel view it is possible to change the configuration of
the Channel within the Device Type view. In case of changes in the configuration click the
“Configure” button (8). This action over-writes previous configurations.

• The new Device Type can be saved by clicking the “Save” button at the top right corner (9).

2.5 Communication Instances

2.5.1 What are Instances

A SMARTUNIFIER Instance is a dynamically created application that can be deployed to any suit-
able IT resource (e.g., Equipment PC, Server, Cloud), and which provides the connectivity func-
tionality configured. Therefore, a SMARTUNIFIER Instance uses one or multiple Mappings and
selected Communication Channels from a previously defined Device Type.

2.5.2 How to create a new Instance

Follow the steps described below to create a SMARTUNIFIER Instance.

• Select the SMARTUNIFIER Instances Perspective (1).

2.5. Communication Instances 90

SMARTUNIFIER User Manual, Release 1.7.0

• Click on the “Add Instance” button from the upper right corner (2).

• Select a Device Type from the Drop-Down (3)

• The details for the Instance are automatically taken from the Device Type (4). However,
Group, Name, Version and the Description can still be changed.

• The Mapping defined in the Device Type show up in the Mapping area (5).

• To change the existing configuration or if no configuration has been made yet, click the “Con-

2.5. Communication Instances 91

SMARTUNIFIER User Manual, Release 1.7.0

figure” button (6)

• Expand the Advanced Settings option (7) to select the framework version (8) for the Com-
munication Channels. Allows backwards compatibility for Communication Instances created
with previous versions of SMARTUNIFIER.

• Save the SMARTUNIFIER Instance by clicking the “Save” button (9)

• In order to deploy, run and stop the Instance navigate to the Deployment perspective.

2.5. Communication Instances 92

CHAPTER

THREE

CONFIGURATION COMPONENT MANAGEMENT

SMARTUNIFIER provides a comprehensive management of the configuration components:

• Group Filter

• Component Version Control

• Operations

In order to keep the SMARTUNIFIER configuration components organized take a look on how to
name the configuration components.

3.1 Naming Convention

Each Configuration Component created with SMARTUNIFIER has defined a Group, a Name, and a
Version.

We recommend the following naming convention for better comprehensibility.

Group Identifies the integration scenario across all integration scenarios within the SMARTUNIFIER
Manager.

Name Is the name of each component, which is part of the integration scenario, such as: Models,
Channels, Mappings, Device Types, Instances as well as Deployment Endpoints.

Version Defines the version of the component - Suggested format: 1.0.0 / 1.0.1 / 2.0.0.

3.2 Group Filter

With the Group Filter it is possible to restrict the number of components according to the substrings
in the Group.

The Group Name contains substrings separated by a dot “.”. The Group Filter is then able to
visualizes the Group Names in a hierarchical structure.

The Show All filter enables the view of all components (1).

93

SMARTUNIFIER User Manual, Release 1.7.0

In order to apply a filter, click one of the items in the Group Filter list (2). At the top of the table,
the selected filter is visible (3).

Removing the filter is possible by either clicking the selected item again, selecting the Show All
option or by clicking the cross in the filter at the top of the table.

3.3 Component Version Control

Component Version Control enables users to version SMARTUNIFIER configuration components
such as Information Models, Communication Channels, Mappings, Device Types and Communica-
tion Instances.

By default, SMARTUNIFIER is using the Component Version Control internally - therefor no con-
figuration is needed. Another option is to point to an external version control system like Gitea. In
order to setup an external version control check out the SMARTUNIFIER Installation Guide.

How it works: SMARTUNIFIER creates a repository for each configuration component. Configura-
tion components can be released using tags which reference a specific point in the Git history. After
a tag has been created (equivalent to release of a configuration component) there will be no further
history of commits/changes. This means that the configuration component can not be edited any
further.

3.3. Component Version Control 94

https://gitea.io/en-us/

SMARTUNIFIER User Manual, Release 1.7.0

3.3.1 How to release configuration components

In order to release a configuration component follow the steps below:

1. Go to an edit page of a configuration component and click the release button.

1. Enter a version number.

2. Click Ok to confirm.

4. Open the version drop-down to change between latest and other tags.

Note: Once a configuration component is released you can no longer edit the current tag. If
changes are necessary select latest. Once you finished editing the final version you can repeat the
release process as described above.

3.3. Component Version Control 95

SMARTUNIFIER User Manual, Release 1.7.0

3.4 Operations

3.4.1 Add

The option to add/create a new component is described in the Instance Setup chapter, for each type:

• Information Models

• Communication Channels

• Mappings

• Device Types

• Instances

• Deployments

• Deployment Endpoints

3.4.2 Edit

A component can be edited by clicking the Edit button (1).

The component is opened in the edit mode.

In the edit mode, the following operations are available:

• Clone

• Apply

• Save

• Save and Close

3.4. Operations 96

SMARTUNIFIER User Manual, Release 1.7.0

• Close

3.4.3 Apply

In the edit mode, after a new data input the Apply button (1) must be selected to validate/compile
data.

3.4.4 Exit Editing

The user can exit the edit mode by clicking on the Close button (1).

If the data is not saved, a pop-up appears and the user can select the Cancel button (2) to return
to the edit mode and save the data or select the Leave button (3) to exit without saving.

3.4. Operations 97

SMARTUNIFIER User Manual, Release 1.7.0

3.4.5 Save

In the Edit Mode, after applying the input data, the user can save the changes by clicking on the
Save button (1).

A confirmation message appears (2). The edit mode remains active.

3.4.6 Save and Close

When editing a component, after applying the input data, the user can save the changes and exit
the edit mode by clicking on the Save and Close button (1).

A confirmation message appears (2). The view mode is active.

3.4. Operations 98

SMARTUNIFIER User Manual, Release 1.7.0

3.4.7 Search

The Search option allows the user to filter results by different criteria:

• Name

• Version

• Description

The search is not key sensitive and it works as a partial search, displaying all the results matching
with the searched characters.

To search for a component, select the Search button (1) from the upper right corner.

Enter a search term (2).

To cancel the search click on the Close Search button (3).

3.4. Operations 99

SMARTUNIFIER User Manual, Release 1.7.0

3.4.8 Sort

The information in the view mode can be sorted ascending or descending for each column:

• Group

• Name

• Version

• Description

To sort the information from a column click on the column header (1). An arrow icon will indicate
if the components are sorted ascending or descending.

In the view mode on the right of each component, the following operations are available:

• Export

• Edit

• Delete

3.4.9 Reload

This option reloads the components from the repository by selecting the Reload button (1) from
the upper right.

3.4. Operations 100

SMARTUNIFIER User Manual, Release 1.7.0

3.4.10 Import

This option allows the user to add to the scenario a new created or an exported component.

Before importing an exported component, open the JSON file and delete the component id (1) -
when importing the database will generate a universally unique identifier (uuid). Also, copy (2)
and paste (3) the version in the info section, as shown bellow.

3.4. Operations 101

SMARTUNIFIER User Manual, Release 1.7.0

To import, select the Import button (4) from the upper right.

3.4. Operations 102

SMARTUNIFIER User Manual, Release 1.7.0

A pop-up window appears. Chose the file (5) and select the Open button (6).

The imported component is now listed (7).

3.4.11 Export

The user has the option to export a component to the local machine.

First, click on the Export button (1).

3.4. Operations 103

SMARTUNIFIER User Manual, Release 1.7.0

3.4.12 Clone

A component can be cloned from the edit mode, by selecting the Clone button. (1).

A pop-up appears, click on the Ok button (2).

The cloned component is visible, in edit mode, requiring to input a valid name (4)

Note: The Clone operation is not available for the Deployment component.

3.4.13 Delete

A component can be deleted by clicking the Delete button (1).

3.4. Operations 104

SMARTUNIFIER User Manual, Release 1.7.0

Select Delete on the confirmation dialog (2).

The component is deleted.

3.4.14 Bulk Action

This operation is available only for the Deployment.

Click on the ellipsis menu button (1) to see the available bulk operations:

• Start

• Stop

• Deploy

• Undeploy

To get started, check the boxes for specific Deployment Instances (2) or the box to select all (3).
The bulk operations popup appears (4).

3.4. Operations 105

SMARTUNIFIER User Manual, Release 1.7.0

For the Deployment Instance there is a defined action order:

• Deploy, Start, Stop, Start, Stop. . . Undeploy

In this example the selected Instances should be deployed (5).

A status popup appears, displaying the following information:

• Performed action (6)

• The Instances included in the bulk action (7)

• The status of the action (8)

Click the Ok button (9) to close the popup.

When the selected Instances (10) are in different states (11), the bulk action (12) will only affect
Instances with the compatible state (13).

3.4. Operations 106

SMARTUNIFIER User Manual, Release 1.7.0

Note: Protected Instances will not work using bulk actions.

3.4. Operations 107

CHAPTER

FOUR

DEPLOYMENT

SMARTUNIFIER supports the deployment of Instances on several computing environments:

• Local - on the same environment the SMARTUNIFIER Manager is running on

• Docker - on containerized environments

• SSH - remote on Linux machine

• Fargate - on the AWS Cloud using fully managed service AWS Fargate

Learn how to operate and monitor your SMARTUNIFIER Instances.

Learn about notifications.

Learn about additional deployment options.

4.1 What is a Deployment

With the SMARTUNIFIER Deployment capability you can deploy your SMARTUNIFIER Commu-
nication Instances to any IT resource (e.g., Equipment PC, Server, Cloud) suitable to execute
SMARTUNIFIER Instances.

Depending on the Deployment Type a Deployment Endpoint must be initially created. For deploy-
ments on a local computer, no Deployment Endpoint needs to be set.

Currently, the following Deployment Endpoints are supported:

• Local: Deployment of a SMARTUNIFIER Communication Instance to your local computer
where the SMARTUNIFIER Manager is running on.

• Docker: Deployment of a SMARTUNIFIER Communication Instance in containerized environ-
ments.

• AWS: Deployment of a SMARTUNIFIER Communication Instance on the AWS Cloud using
AWS Fargate.

• SSH: Deployment of a SMARTUNIFIER Communication Instance on a Linux machine.

SMARTUNIFIER Communication Instance can be encrypted prior the deployment by enabling the
encryption option. You learn how to do so in the chapters of the specific deployment options.

Getting started:

108

SMARTUNIFIER User Manual, Release 1.7.0

• Select your environment and create the Deployment:

– Local

– Docker

– Fargate

– SSH

• Learn how to operate an Deployment.

• Learn how to monitor an Deployment.

4.2 Deploy Locally

SMARTUNIFIER Communication Instances can be deployed on the IT-resource where the
SMARTUNIFIER Manager is running on (e.g., a computer, a server or the AWS Cloud).

Note: Before deploying a Local Communication Instance make sure to create and Start a Local
Deployment Endpoint. The Deployment Endpoint specifies the location where you want the Instance
to run.

Follow the steps described below in order to deploy a Communication Instance locally:

• Select the SMARTUNIFIER Deployment perspective (1).

4.2. Deploy Locally 109

SMARTUNIFIER User Manual, Release 1.7.0

• Click on the Add Deployment button (2).

• Select the Deployment Type Local from the pop-up (3).

• In the Add Deployment view a set of configuration parameters is required (4)

– Select the SMARTUNIFIER Communication Instance to be used in the Deployment.

– Select the Local Endpoint.

– Select the log file level. We recommend the log level of type Info in case of a normal
deployment scenario.

– (Optional) Enable Encryption.

– (Optional) Enable Protection.

– (Optional) Add VM Arguments.

4.2. Deploy Locally 110

SMARTUNIFIER User Manual, Release 1.7.0

• When all mandatory fields are filled click the Save button (5).

When the Instance is deployed, it’s configuration will be copied in the Deployment folder defined
in the Local Deployment Endpoint configuration.

Note: The Instance configuration folder can be copied to another location and started, but the
Instance will not be monitored by the SMARTUNIFIER Manager.

4.3 Deploy with Docker

Note: Before deploying a Communication Instance with Docker make sure to add a Docker Java
Image and to create and Start a Docker Deployment Endpoint. The Deployment Endpoint specifies
the location where you want the container to run.

SMARTUNIFIER Communication Instances can be deployed on any location that has an existing
Docker environment in place.

Follow the steps described below to deploy a Communication Instance inside a Docker container:

• Select the SMARTUNIFIER Deployment perspective (1).

4.3. Deploy with Docker 111

SMARTUNIFIER User Manual, Release 1.7.0

• Click on the “Add Deployment” button (2).

• Select the Deployment Type Docker from the pop-up (3).

• Select the SMARTUNIFIER Communication Instance to be used in the Deployment (4).

• Select the Docker Endpoint ID created in the Docker section from the Drop-Down menu (5).

• Select the Image added in the Docker Java Image Manager from the Drop-Down menu (6).

• Select the log file level (7). We recommend the log level of type Info in case of a normal
deployment scenario.

• (Optional) Enable Encryption (8)

• (Optional) Enable Protection (9)

4.3. Deploy with Docker 112

SMARTUNIFIER User Manual, Release 1.7.0

• (Optional) Add Volumes to store persisting data that can be used by the Docker container
(10).

– Enter the local path of the directory or the name of an existing volume (11)

– Enter the mount path inside the container (12)

• (Optional) Add VM Arguments (13)

• When all mandatory fields are filled click the “Save” button (14).

4.4 Deploy with SSH

Note: Before deploying a Communication Instance with SSH make sure to create and Start a SSH
Deployment Endpoint. The Deployment Endpoint specifies the location where you want the Instance
to run.

SMARTUNIFIER Communication Instances can be remotely deployed on any Linux machine by
using the Secure Socket Shell protocol.

Follow the steps described below to deploy a Communication Instance using the SSH protocol:

• Select the SMARTUNIFIER Deployment perspective (1).

4.4. Deploy with SSH 113

SMARTUNIFIER User Manual, Release 1.7.0

• Click on the “Add Deployment” button (2).

• Select the Deployment Type SSH from the pop-up (3).

• In the “Add Deployment” view a set of configuration parameters is required (4)

• Select the SMARTUNIFIER Communication Instance to be used in the Deployment.

• Select the SSH Endpoint ID created in the SSH section from the Drop-Down menu.

• Select the log file level. We recommend the log level of type Info in case of a normal deploy-
ment scenario.

• (Optional) Enable Encryption.

• (Optional) Enable Protection.

• (Optional) Add VM Arguments.

4.4. Deploy with SSH 114

SMARTUNIFIER User Manual, Release 1.7.0

• When all mandatory fields are filled click the “Save and Close” button (5).

4.5 Deploy with AWS Fargate

SMARTUNIFIER supports the deployment of Communication Instances on Amazon Web Services
(AWS) using AWS Fargate. Using AWS Fargate removes the operational overhead of managing
servers by paying only for the resources actually used.

To deploy your SMARTUNIFIER Instances using AWS Fargate an AWS Account is required.

Before deploying a SMARTUNIFIER-Instance using AWS Fargate please refer to the Prerequisites
section and make sure all requirements your Account needs to fulfill are met.

4.5.1 Prerequisites

Specialized Knowledge

Before deploying and operating SMARTUNIFIER Instances using AWS Fargate, it is recommended
that you become familiar with the following AWS services. (If you are new to AWS, see Getting
Started with AWS)

• Amazon Elastic Container Service (ECS)

• Amazon Virtual Private Cloud (VPC)

• Amazon CloudWatch

You should also be familiar with the used Communication Channel and its capabilities of the de-
ployed SMARTUNIFIER Instance.

4.5. Deploy with AWS Fargate 115

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://docs.aws.amazon.com/ecs/?id=docs_gateway/
https://docs.aws.amazon.com/vpc/index.html
https://docs.aws.amazon.com/cloudwatch/?id=docs_gateway

SMARTUNIFIER User Manual, Release 1.7.0

AWS Resources

For the deployment of SMARTUNIFIER Instances on AWS Fargate the following resources are re-
quired:

Amazon S3 - Bucket

SMARTUNIFIER is using an Amazon S3 Bucket to upload Instances in an archive file format. We
recommend to create a private Bucket dedicated for the SMARTUNIFIER.

AWS VPC and Subnets

In order for SMARTUNIFIER to deploy Instances your AWS account a VPC and Subnets are needed.
Please note that the Default VPC should not be used.

Amazon ECS - Cluster

SMARTUNIFIER is using AWS Fargate for the deployment of Instances on the AWS Cloud. Therefor
an ECS Cluster is required. We recommend to create one Cluster dedicated for SMARTUNIFIER
deployed Instances.

AWS ECR - Repository

SMARTUNIFIER is using an AWS ECR repository in order to push Docker Images, which is
created by an AWS CodeBuild project. We recommend to create one repository dedicated for
SMARTUNIFIER Instance images.

IAM - User

SMARTUNIFIER complies with the security best practices in IAM and does not need root privileges.
We recommend to create one user dedicated for SMARTUNIFIER. The IAM user follows the general
rule of least privileges and allows only policies needed for the deployment of SMARTUNIFIER
Instances.

Create the IAM user by following the steps described in the AWS IAM documentation the IAM dash-
board. The IAM user for SMARTUNIFIER must use the AWS access type programmatic access.

Attach the following permission:

4.5. Deploy with AWS Fargate 116

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

SMARTUNIFIER User Manual, Release 1.7.0

Policy ARN Description
arn:aws:iam::aws:policy/AmazonS3FullAccess Provides full access to all buck-

ets via the AWS Management
Console.

arn:aws:iam::aws:policy/AWSCodeBuildAdminAccess Provides full access to AWS
CodeBuild via the AWS Man-
agement Console. Also at-
tach AmazonS3ReadOnlyAccess
to provide access to down-
load build artifacts, and at-
tach IAMFullAccess to create
and manage the service role for
CodeBuild.

arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess Provides administrative access
to Amazon ECR resources.

arn:aws:iam::aws:policy/AmazonECS_FullAccess Provides administrative access
to Amazon ECS resources and
enables ECS features through
access to other AWS service re-
sources, including VPCs, Auto
Scaling groups, and CloudFor-
mation stacks.

arn:aws:iam::aws:policy/CloudWatchFullAccess Provides full access to Cloud-
Watch.

Programmatic system credentials

SMARTUNIFIER needs the set up of a credential profile in order to deploy Instances on AWS
Fargate. We recommend to create a new access key after 90 days.

Listing 1: Credentials Profile

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

IAM Role - AWS CodeBuild Service Role

CodeBuild requires a service to interact with dependent AWS services:

• Access to Amazon S3 to retrieve SMARTUNIFIER Instance artifacts - such as libraries and
configuration files.

• Access to AWS ECR to push the container image in the specified repository

Create the following IAM Role via the AWS console.

4.5. Deploy with AWS Fargate 117

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-additional.html#setup-additional-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

SMARTUNIFIER User Manual, Release 1.7.0

Listing 2: AWS CodeBuild Service Role

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "CloudWatchLogsPolicy",
"Effect": "Allow",
"Action": [

"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents"

],
"Resource": [

"*"
]

},
{

"Sid": "CodeCommitPolicy",
"Effect": "Allow",
"Action": [

"codecommit:GitPull"
],
"Resource": [

"*"
]

},
{

"Sid": "S3GetObjectPolicy",
"Effect": "Allow",
"Action": [

"s3:GetObject",
"s3:GetObjectVersion"

],
"Resource": [

"*"
]

},
{

"Sid": "S3PutObjectPolicy",
"Effect": "Allow",
"Action": [

"s3:PutObject"
],
"Resource": [

"*"

(continues on next page)

4.5. Deploy with AWS Fargate 118

SMARTUNIFIER User Manual, Release 1.7.0

(continued from previous page)

]
},
{

"Sid": "ECRPullPolicy",
"Effect": "Allow",
"Action": [

"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage"

],
"Resource": [

"*"
]

},
{

"Sid": "ECRAuthPolicy",
"Effect": "Allow",
"Action": [

"ecr:GetAuthorizationToken"
],
"Resource": [

"*"
]

},
{

"Sid": "S3BucketIdentity",
"Effect": "Allow",
"Action": [

"s3:GetBucketAcl",
"s3:GetBucketLocation"

],
"Resource": "*"

}
]

}

4.5.2 Architecture

The deployment of SMARTUNIFIER-Instances on AWS Cloud is handled by the SMARTUNIFIER
Manager. The Manager can run on any On-Premise location such as, server environments and
Industrial PCs; however, in order to deploy Instances on AWS an internet connection is required. To
run SMARTUNIFIER Manager on AWS Cloud please see the SMARTUNIFIER Installation Manual.

SMARTUNIFIER is using the AWS SDK for Java to make deployments of Instances to AWS Fargate.
Following AWS Services are used during the deployment process:

4.5. Deploy with AWS Fargate 119

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/fargate/

SMARTUNIFIER User Manual, Release 1.7.0

• AWS Simple Storage Service (Amazon S3) (Mandatory).

• AWS CodeBuild (Mandatory).

• AWS Elastic Container Registry (Mandatory).

• AWS Elastic Container Service (Mandatory).

• AWS Fargate (Mandatory).

• Amazon CloudWatch (Optional).

Sequence of events

1. Upload of the SMARTUNIFIER Instance as an archive file format to Amazon S3.

2. Creation and automatic triggering of an AWS CodeBuild project.

3. The AWS CodeBuild project uses the archive file from the specified Amazon S3 Bucket in
order to build a Docker Image for the particular SMARTUNIFIER Instance.

4. When finished, AWS CodeBuild pushes the Image to a specified ECR Repository.

5. Is the Image available on the ECR Repository a Fargate Task Definition is created as well as
an ECS Service which is using the Task Definition.

6. By default, the Task is not started directly. Starting and Stopping of tasks can be done via the
SMARTUNIFIER Manager or the AWS Console.

4.5. Deploy with AWS Fargate 120

https://aws.amazon.com/s3/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/
https://aws.amazon.com/cloudwatch/

SMARTUNIFIER User Manual, Release 1.7.0

4.5.3 Planning the Deployment

Task Sizing

Each SMARTUNIFIER Instance runs as java byte code, thus having a low footprint. We recommend
using the following guideline for Task Sizing.

Note: Please note that AWS Fargate is pricing based on the vCPU and memory resources, which
are specified during the set up.

4.5. Deploy with AWS Fargate 121

SMARTUNIFIER User Manual, Release 1.7.0

CPU Memory Values Instance Workload
(Number of Map-
pings)

0.25 vCPU 0.5GB, 1GB, and 2GB <= 5
0.5 vCPU Min. 1GB and Max. 4GB, in 1GB increments > 6

4.5.4 Deployment Steps

Expected Time

• Deployment of an SMARTUNIFIER Instance on AWS Fargate (Existing AWS Resources) -
expected deployment time: 3-5 min

• Deployment of an SMARTUNIFIER Instance on AWS Fargate (Creation of needed AWS Re-
sources required) - expected deployment time: 20-30 min (Please note that this is a one time
setup of the customers AWS cloud infrastructure)

Deployment of the SMARTUNIFIER Instance

If you have not already created and Started an AWS Deployment Endpoint please refer to chapter:
AWS Endpoint.

Follow the steps described below to deploy a SMARTUNIFIER Instance on AWS Fargate:

• Select the SMARTUNIFIER Deployment perspective (1).

4.5. Deploy with AWS Fargate 122

SMARTUNIFIER User Manual, Release 1.7.0

• Click the “Add” button (2).

• Select AWS (3).

• Select the SMARTUNIFIER Instance you want to deploy (4):

• Select your AWS account in form of a Deployment Endpoint created previously (5) and con-
figure the following parameters:

– Select the VPC in which you want to deploy the SMARTUNIFIER Instance.

– Select a Subnet within the VPC.

– Select a Security Group.

– Select a IAM Role for AWS CodeBuild.

* AWS CodeBuild needs a service role so that it can interact with dependent AWS
services on behalf of SMARTUNIFIER.

4.5. Deploy with AWS Fargate 123

SMARTUNIFIER User Manual, Release 1.7.0

– Select a S3 Bucket.

– Select a ECS Cluster in which the Instance should be deployed.

– Select an ECR Repository.

* The AWS CodeBuild project, which is created and triggered by SMARTUNIFIER,
pushes an Image to the provided Amazon ECR Repository.

– Select the Task’s - CPU.

– Select the Task’s - Memory.

• Select the log file level (6).

• (Optional) Enable Encryption (7)

• (Optional) Enable Protection (8)

• Save the Deployment by clicking the “Save” button (9).

• Go back to the list view by clicking the “Close” button and deploy your SMARTUNIFIER
Instance by clicking the “Deploy” button (8).

• You can start and stop the Instance using SMARTUNIFIER by clicking the “Start”/”Stop”
button or using the AWS Console.

4.5. Deploy with AWS Fargate 124

SMARTUNIFIER User Manual, Release 1.7.0

Monitoring

Once deployed and started, the SMARTUNIFIER Instance logs can be accessed via Amazon Cloud-
Watch.

In order to access log files follow the steps below:

• Go to the Amazon CloudWatch Service via the Console.

• Select Log groups from the menu on the left.

• Select awslogs-testinstance and select a log Stream.

4.6 How to Deploy, Run and Operate a Deployed Instance

4.6.1 How to Deploy an Instance

• In order to start the Instance, click first the “Deploy” button (1). A message is shown, that
confirms the successful deployment of the Instance.

4.6.2 How to Run an Instance

• After successfully deploying the Instance, the state changes from NotDeployed to Stopped. You
can now click the enabled “Start” button (2). The Instance state will change to Started. A
message is shown, that confirms the successful start of the Instance.

4.6.3 How to Stop an Instance

• To stop the Instance, click the “Stop” button (3).

4.6. How to Deploy, Run and Operate a Deployed Instance 125

SMARTUNIFIER User Manual, Release 1.7.0

4.6.4 How to Delete a Deployment of an Instance

• Click on the “Delete” button to delete the Deployment for a specific Instance (4). This is only
possible if the Instance is in the state Stopped.

4.6.5 How to Un-deploy an Instance

• In order to un-deploy an Instance, make sure that the Instance is not running. If necessary
stop the Instance.

• Click on the “Undeploy” button in the upper right corner (5).

• A popup appears, uncheck the box (6) to keep the log folder and click on the Yes button (7)
to confirm.

• The Instance state changes to NotDeployed (8) and the Deployment can be edited. Please
note that the Instance associated with the Deployment cannot be changed.

4.6.6 How to Edit a Deployment of an Instance

• Click on the “Edit” button to perform changes to the Deployment (9). It is only possible to
edit a Deployment if the Instance is not deployed. In case the Instance is deployed, only the
details of the Deployment can be viewed.

4.6. How to Deploy, Run and Operate a Deployed Instance 126

SMARTUNIFIER User Manual, Release 1.7.0

4.7 Notifications

SMARTUNIFIER comes with an integrated notification system, which helps to gain insights when
a deployed Communication Instance is started or running and errors appear.

4.7.1 How to access Notifications

When a deployed Communication Instance is started or running and errors appear, the number of
errors will be displayed near the Notifications button (1).

Click on the Notifications button and the Notifications List (2) will display all the Instance errors.

Select a notification (3) from the list and the Dashboard (4) will appear and display additional
information.

4.7. Notifications 127

SMARTUNIFIER User Manual, Release 1.7.0

4.7.2 How to manage Notifications

In order to manage the notifications click on the Notifications button (1) and select the View All
Notifications option (2).

The Notifications Manager displays all the notifications. Select all (3) or specific notifications (4).

After selection a pop-up appears providing two options.

Click on the Dismiss button (5) to remove the selected notifications from the Notifications List.
The selected notifications will still be available in the Notifications Manager.

4.7. Notifications 128

SMARTUNIFIER User Manual, Release 1.7.0

To remove the selected notifications from the Notifications List and the Manager, click on the Delete
button (6).

4.8 How to monitor a deployed Instance

4.8.1 Log Viewer

SMARTUNIFIER comes with an integrated log viewer, which helps to gain insights in deployed and
running Communication Instance.

The log viewer will show the details of logs based on the level defined throughout the creation of
the deployment.

Log Levels

TRACE The most fine-grained information only used in rare cases where full visibility of what is
happening inside a Communication Instance.

DEBUG Less granular compared to the TRACE level, but more than needed in an production envi-
ronment. The DEBUG log level should be used for troubleshooting an faulty Communication
Instance or when running a Communication Instance inside a test environment.

INFO Is the standard log level used for a standard deployment of a Communication Instance.

4.8. How to monitor a deployed Instance 129

SMARTUNIFIER User Manual, Release 1.7.0

WARNING Log level that indicates that something unexpected happened inside a Communication
Instance that might cause problems for the course of communication.

Log Viewer operation

Logs can be accessed by clicking the “Log” button (1).

Log Viewer comes with the following features:

• Font size adjustability (2)

• Searching, based on a regular expression (Regex) (3)

• Start/Stop to “freeze” the current logging in order to investigate already printed log lines (4)

• Follow Tail, to skip through to the latest log line (5)

4.8.2 Dashboard

• In order to monitor an Instance, access the Dashboard view by clicking the “Dashboard”
button (6).

• If the Instance is in the state NotDeployed the Dashboard cannot be accessed.

4.8. How to monitor a deployed Instance 130

SMARTUNIFIER User Manual, Release 1.7.0

• The Dashboard provides the following information:

– Channels associated with the Instance

– Log Viewer

– Status of the Instance

– Start time of the Instance

– Instance Time Up

– CPU Usage of the Instance

– Memory Usage of the Instance

– Sent and received messages

4.9 Additional Options

4.9.1 Encryption of Communication Instances

This feature provides the possibility to encrypt the configuration files of Communication Channels
used by the Instance, which may contain credentials to access a database or external services. The
encryption method used is Advanced Encryption Standard (AES).

The encryption is available for all deployment options, by following the steps bellow:

• Check the Enable Encryption box (1).

4.9. Additional Options 131

SMARTUNIFIER User Manual, Release 1.7.0

• A symmetrical key (cfg.key) is generated and can be saved in the same folder as the deploy-
ment (2) or check the Custom Path option (3) to save the key into a secured location.

4.9.2 Protect Communication Instances

This feature provides an additional protection when performing an Instance action (e.g., deploy,
undeploy, start, stop).

The protection is available for all deployment options, by checking the Protected box (1).

Now the Instance is protected, meaning that when the user performs an action like Deploy (2), a
popup appears requiring to input the Instance name (3).

Note: Protected Instances will not work with Bulk actions.

4.9. Additional Options 132

SMARTUNIFIER User Manual, Release 1.7.0

4.9.3 VM Arguments

This feature provides the possibility to configure the Java Virtual Machine (JVM). In some
cases, when dealing with larger files when using the File Reader Communication Channel
(large XML file), it might be necessary to increase the XMX in order to avoid running into a
java.lang.OutOfMemoryError - exception.

VM Arguments can be configured when deploying an Communication Instance locally or on Docker,
by following the steps below:

• Check the JMX Properties box (1) to expand the Java Management Extensions parameters
and input the JMX Host Name and Port (2).

• Check the authentication method (3).

• Update the XMS value (4), minimal heap size, representing the amount of memory used by
the JVM to start with.

• Update the XMX value (5), maximal heap size, representing the maximum amount of memory
that JVM will be able to use.

• By default, the Heap Dump On Out Of Memory Error option is checked, providing an
analysis file for debugging.

• Additional JVM arguments can be added by selecting the add Arg button (6) and input the
argument (7). For example, to debug memory issues or application performance, the Garbage
Collection logging can be enabled in JVM, as seen below.

4.9. Additional Options 133

SMARTUNIFIER User Manual, Release 1.7.0

• An additional argument can be deleted by clicking on the delete Arg button (8).

4.9. Additional Options 134

CHAPTER

FIVE

ADMINISTRATION

Learn how to:

• Integrate an Active Directory

• Backup and Restore the Repository

• Manage Communication Channel Types

• Manage Docker Java Images

• Create Deployment Endpoints

• Manage Credentials

• Manage User Accounts

• Manage Logging Configurations

• Use Extensions

5.1 Active Directory Integration (ADI)

SMARTUNIFIER supports Windows Active Directory (AD). System administrators can use the Ac-
tive Directory to add/remove users, groups, and resources quickly and efficiently through one
dashboard.

135

SMARTUNIFIER User Manual, Release 1.7.0

5.1.1 AD Group Mapping

An user from AD must be added to a group that acts as a role. The role determines what permissions
are assigned to the user.

The mapping between the AD groups and the SMARTUNIFIER roles is defined in the applica-
tion.conf file from the conf folder.

5.1. Active Directory Integration (ADI) 136

SMARTUNIFIER User Manual, Release 1.7.0

5.1. Active Directory Integration (ADI) 137

SMARTUNIFIER User Manual, Release 1.7.0

As seen above (1) in the left side are the SMARTUNIFIER roles and in the right side, between the
quotation marks are the AD groups.

The SMARTUNIFIER roles are predefined:

• Administrator - global permission

• Writer - limited permission, write and read access

• Reader - limited permission, read access

A user from an AD group will have permission based on the mapping of the AD group to a prede-
fined SMARTUNIFIER role.

After all the above configuration is done, the user can login to the SMARTUNIFIER with the User
logon name and the Password defined in AD.

5.2 Backup and Restore

SMARTUNIFIER provides the possibility to manually backup and restore the repository. The repos-
itory represents a central location in which all the configuration components are stored:

• Information Models

• Communication Channels

• Mappings

• Node Types

5.2. Backup and Restore 138

SMARTUNIFIER User Manual, Release 1.7.0

• Instances

5.2.1 How to access

To access the Backup or the Restore option, click on the Account icon (1), go to the Administrative
option (2) and select the Backup perspective (3) or the Restore perspective (4).

Note: The Backup and the Restore features can only be accessed by user accounts with an admin-
istrator role assigned. Also keep in mind that the same SMARTUNIFIER Manager version must be
used.

5.2.2 Backup

The Backup feature provides the possibility to create a copy of the configuration components to
store elsewhere, so that it can be used to restore the last used after a data loss event occurs.

Follow the steps described below to create a backup of the repository:

• Select the Account icon (1), go to the Administrative section (2) and select the Backup
option (3).

5.2. Backup and Restore 139

SMARTUNIFIER User Manual, Release 1.7.0

• The configuration components (Repository) are visible. Check the boxes (4) to select what to
backup or check the top box (5) to select all.

• When the selected component has dependencies, a pop-up will appear and click on the Yes
button (6) to select all the dependencies.

• Click on the Database tab (7) and select the desired tables (8) for backup.

5.2. Backup and Restore 140

SMARTUNIFIER User Manual, Release 1.7.0

• After the desired components are selected, click on the Backup button (9). Click on the Yes
button (10) to confirm.

• Choose the path (11) and the name (12) to save the repository TAR file then click on the
Save button (13) to finish.

5.2. Backup and Restore 141

SMARTUNIFIER User Manual, Release 1.7.0

5.2.3 Restore

The Restore feature allows to copy the SMARTUNIFIER configuration components from a backup
to the original location.

Note: When restoring, the existing configuration components will be overwritten by with the
selected configuration components from the backup if the name match!

Follow the steps described below to restore the SMARTUNIFIER repository:

• Select the Account icon (1), go to the Administrative section (2) and select the Restore
option (3).

• A pop-up appears, choose the TAR file to restore (4) and select the Yes button (5) to confirm.

• The backup configuration components (Repository) are visible.

• If needed, check the box (6) to delete all existing components, before restoring.

• Check the boxes (7) to select what to restore or check the top box (8) to select all. Do the
same for Database tab (9) if needed.

5.2. Backup and Restore 142

SMARTUNIFIER User Manual, Release 1.7.0

• If a component from the current configuration (if any) has the same name as one from the
backup, it will be overwritten.

• When the selected component has dependencies, a pop-up will appear and click on the Yes
button (10) to select all the dependencies.

• After the desired components are selected, click on the Restore button (11).

• The configuration components are uploading and all existing data will be overwritten!

• The uploading progress is displayed, including errors, if any.

• Click on the Close button to finish (12).

5.2. Backup and Restore 143

SMARTUNIFIER User Manual, Release 1.7.0

5.2.4 Manager Backup

In order to backup SMARTUNIFIER Manager make a copy of the SMARTUNIFIER installation
package.

Before the backup make sure to remove the following directories:

• temp

• workspace

• log

• deploy

5.3 Channel Types Manager

By default, the Channel Types Manager displays all Channels included in your current version of
SMARTUNIFIER.

Communication Channels that should be used within the configuration of a SMARTUNIFIER Com-
munication Instance have to exist in the Channel Types Manager. How to add new Channel Types
is shown in the section below.

5.3. Channel Types Manager 144

SMARTUNIFIER User Manual, Release 1.7.0

5.3.1 How to access

Follow the steps bellow to access the Channel Types Manager:

• Click on the Account icon (1) and select the Advanced UI (2).

• Click on the Channel Types button (3) to open the Channel Types perspective.

• The main view of the Channel Types is visible.

5.3. Channel Types Manager 145

SMARTUNIFIER User Manual, Release 1.7.0

Note: The Channel Types Manager can only be accessed by user accounts with an administrator
role assigned.

5.3.2 About Layers

Implementations of SMARTUNIFIER Communication Channels consist of one and up to three so-
called layers.

The target of layers is to transform data from Information Models into the respective data format
of the specific protocol used in case the data traffic is outgoing from a SMARTUNIFIER Communi-
cation Instance. The same principle applies when data is incoming.

As an example for such a layer stack you can see below the layer stack for the MQTT Communication
Channel:

• Data that is incoming from a Device is transformed into a String behind the scene.

• The String is then converted into a JSON Object.

• Finally, the JSON is used to assign data to the assigned Information Model.

5.3. Channel Types Manager 146

SMARTUNIFIER User Manual, Release 1.7.0

5.3.3 How to create a new Channel Type

Follow the steps below to create a new Channel Type:

1. Open the SMARTUNIFIER menu and select Advanced UI.

2. Go to the Channel Types perspective by clicking the Channel Types button.

5.3. Channel Types Manager 147

SMARTUNIFIER User Manual, Release 1.7.0

3. Click on the Add button in the upper right corner.

4. Enter some descriptive information:

• Enter a group

• Enter the name of the Channel

• Enter a version

5. Next, define the layer stack of the new Channel Type:

• Select a layer with the Layer type drop-down menu.

• In case the selected layer has more layers dependent on itself, select again another layer
with the Layer type drop-down menu showing up below.

6. To save the Communication Channel Type select the Save button.

5.3. Channel Types Manager 148

SMARTUNIFIER User Manual, Release 1.7.0

5.4 Docker Java Image Manager

SMARTUNIFIER supports the Deployment of Instances using Docker Containers using different
Java base images. With the Docker Java Images Manager, the user can create and maintain different
versions of Docker Java images.

This feature can only be accessed by a user with the administrator role.

5.4.1 How to access

Follow the steps bellow to access the Docker Java Image Manager:

• Click on the Account icon (1), go to Administrative section (2) and select the Docker Java
Image Manager option (3).

5.4. Docker Java Image Manager 149

SMARTUNIFIER User Manual, Release 1.7.0

• The Docker Java Image Manager is visible.

5.4. Docker Java Image Manager 150

SMARTUNIFIER User Manual, Release 1.7.0

Note: The Docker Java Image Manager can only be accessed by user accounts with an administra-
tor role assigned.

5.4.2 Add a New Docker Java Image

Follow the steps described below to add a new Docker Java image:

• Click on the Add button (1).

• In the Add Docker Java Image view, a set of configuration parameters is required (2): * Provide
a Group and a Name * Provide a tag e.g., adoptopenjdk/openjdk8:jdk8u202-b08

• After all mandatory fields are filled in, click the Save button (3).

5.4. Docker Java Image Manager 151

SMARTUNIFIER User Manual, Release 1.7.0

5.4.3 Edit a Docker Java Image

To edit a Docker Java image, select the Edit button (1).

The Docker Java image is in the Edit Mode, the configuration parameters can be edited and then
save the session by selecting the Save button.

5.4.4 Delete a Docker Java Image

To delete a Docker Java image, select the Delete button (1).

A pop-up confirmation appears, select the Delete button.

5.5 Deployment Endpoints

5.5.1 What are Deployment Endpoints

Deployment Endpoints are used to identify the location of a Deployment (i.e., the definition where
an Instance is executed). With the Deployment Endpoints, you can create and maintain those
locations. This feature can only be accessed by a user with the administrator role.

5.5.2 How to access

Follow the steps bellow to access the Deployment Endpoints:

• Click on the Deployment Endpoints button (1) to open the Deployment Endpoints perspec-
tive.

5.5. Deployment Endpoints 152

SMARTUNIFIER User Manual, Release 1.7.0

• The main view of the Deployment Endpoints is visible.

Note: The Deployment Endpoints can only be accessed by user accounts with an administrator
role assigned.

5.5.3 Deployment Endpoints Types

Local

SMARTUNIFIER supports Endpoint for Local Deployment. A Default Local Endpoint is preconfig-
ured.

Follow the steps described below to create a Local Deployment Endpoint:

• Navigate to the SMARTUNIFIER Deployment Endpoints perspective (1).

• Click on the Add Endpoint button (2).

• Select the Deployment Type Local from the pop-up (3).

5.5. Deployment Endpoints 153

SMARTUNIFIER User Manual, Release 1.7.0

• In the Add Endpoint view a set of configuration parameters is required (4)

– Provide a Group and a Name

– Input the path for Java

– Provide the Deployment Folder

– Configure the Soft/Hard Refresh Interval and the Log Status Interval (in milliseconds)

– Enable Monitor Logs (optionally)

• After all mandatory fields are filled in, click the Save button (5).

Docker

SMARTUNIFIER supports the Deployment of Instances using Docker Containers. Before creating
a new Deployment for an Instance using Docker. install Docker on your device and open up the
Docker Remote API Interface. If you want to learn more about Docker and how to install it, visit
the Docker Website. When your Docker Daemon is up and running you must provide a Docker
endpoint.

• Navigate to the SMARTUNIFIER Deployment Endpoints perspective (1).

5.5. Deployment Endpoints 154

https://success.docker.com/article/how-do-i-enable-the-remote-api-for-dockerd
https://docs.docker.com/install/

SMARTUNIFIER User Manual, Release 1.7.0

• Click on the Add Endpoint button (2).

• Select the Deployment Type Docker from the pop-up (3).

• In the Add Endpoint view a set of configuration parameters is required (4)

– Provide a Group and a Name

– Provide URL. Depending on your use case choose between the unix e.g., unix:///var/
run/docker.sock or the tcp e.g., tcp://127.0.0.1:2375 protocol.

– If needed, enable TLS by enabling the checkbox

• After all mandatory fields are filled in, click the Save button (5).

5.5. Deployment Endpoints 155

SMARTUNIFIER User Manual, Release 1.7.0

AWS

Before deploying a SMARTUNIFIER Instance on AWS Fargate you need to create an AWS Deploy-
ment Endpoint. The AWS Deployment Endpoint specifies, which AWS account should be used for
the deployment.

Follow the steps described below to create an AWS Deployment Endpoint:

• Select the SMARTUNIFIER Deployment Endpoints perspective (1).

• Click the Add button (2).

• Select the Deployment Type AWS from the pop-up (3).

5.5. Deployment Endpoints 156

SMARTUNIFIER User Manual, Release 1.7.0

• Configure your AWS account by entering the following parameters (4):

– Enter a Group and a Name.

– Enter your AWS Account ID.

– Select the Region.

– Enter the Access Key ID and the Secret Access Key that allows SMARTUNIFIER to
connect to your AWS account.

• Save the new Endpoint by clicking the Save button (5):

SSH

SMARTUNIFIER supports the Deployment of Instances using SSH protocol.

• Navigate to the SMARTUNIFIER Deployment Endpoints perspective (1).

5.5. Deployment Endpoints 157

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-region.html

SMARTUNIFIER User Manual, Release 1.7.0

• Click on the Add Endpoint button (2).

• Select the Deployment Type SSH from the pop-up (3).

• In the Add Endpoint view a set of configuration parameters is required (4)

– Provide a Group and a Name .

– Provide the VM Hostname. The default used port is 22.

– Provide the Username and the Password .

– If needed, input Private Key for secured connections.

– Provide the Java Home path.

– Provide the Deployment Folder path.

• After all mandatory fields are filled in, click the Save and Close button (5).

5.5. Deployment Endpoints 158

SMARTUNIFIER User Manual, Release 1.7.0

5.5.4 Deployment Endpoints States

A Deployment Endpoint can have the following states:

• Stopped - The Stop command has been sent and the Deployment Endpoint is stopped

• Starting - The Start command has been sent

• Running - Deployment Endpoint is up and running

• Failure - The Start command has been sent and the Deployment Endpoint has failed to
start

For the Failure state, hover over it (1) and a pop-up will display the error (2).

5.5. Deployment Endpoints 159

SMARTUNIFIER User Manual, Release 1.7.0

5.5.5 Deployment Endpoints Operations

Start Endpoint

After a Deployment Endpoint is created, its default state is Stopped. To start it, click on the Start
button (1). The state will change into Starting and if it succeeds, the state becomes Running (2).

If the Deployment Endpoint fails to start, the state changes into Failure (3) and an error message
will be displayed (4).

Click on the OK button (5) to close the error message.

Stop Endpoint

To stop a Deployment Endpoint, click on the Stop button (1) and the state will change accordingly
(2).

Delete Endpoint

To remove a Deployment Endpoint, click on the Delete button (1) and confirm the action (2).

5.5. Deployment Endpoints 160

SMARTUNIFIER User Manual, Release 1.7.0

Edit Endpoint

To edit a Deployment Endpoint, click on the Edit button (1).

In the Deployment Endpoint edit view update the configuration (2) and click on the Save button
(3).

5.6 Credential Management

Within the Credential Manager the user can store and manage the credentials needed for the Com-
munication Channel configuration (e.g., password for certificates, username and password for SQL
Server).

5.6. Credential Management 161

SMARTUNIFIER User Manual, Release 1.7.0

5.6.1 How to access

Follow the steps bellow to access the Credential Management:

• Click on the Account icon (1), go to Administrative section (2) and select the Credential
Management option (3).

5.6. Credential Management 162

SMARTUNIFIER User Manual, Release 1.7.0

• The Credential Management is visible.

Note: The Credential Management can only be accessed by user accounts with an administrator
role assigned.

5.6.2 Add Credentials

Follow the steps described below to add credentials:

• Click on the Add button (1).

• Select an option (2) Password or Username and Password.

• Type a name for Credentials (3).

• Add description (4) (optional).

• Input the Username and Password (5).

5.6. Credential Management 163

SMARTUNIFIER User Manual, Release 1.7.0

• Click on the Save and Close button (6).

5.6.3 Edit Credentials

To edit the credentials, select the Edit button (1).

The Edit Mode is visible, the configuration can be edited (2) and then save the session by selecting
the Save and Close button (3).

5.6.4 Delete Credentials

To delete credentials, select the Delete button (1).

A pop-up confirmation appears, select the Delete button (2).

5.6. Credential Management 164

SMARTUNIFIER User Manual, Release 1.7.0

5.6.5 Using Credential Manager when configuring the Communication Channels

When configuring the Communication Channels, the user has the option to manually input the
credentials or to select one from the Credential Manager.

Example of Database Communication Channel configuration:

• Click on the Database credentials field (1).

• Select the Username and password credentials reference option (2).

• Click on the Credentials Manager Selector option (3).

5.6. Credential Management 165

SMARTUNIFIER User Manual, Release 1.7.0

• Select one of the credentials from the list (4).

• If the credentials are not saved in the Credentials Manager, click on the Add credentials
option (5).

5.6. Credential Management 166

SMARTUNIFIER User Manual, Release 1.7.0

• Input the credentials details (6) and click on the Save and Close button (7).

• The new credentials are saved and added into the configuration (8).

5.6. Credential Management 167

SMARTUNIFIER User Manual, Release 1.7.0

5.7 User Management

5.7.1 About User Management

Within the User Management the administrator can create users accounts, assign permissions as
well as activate or deactivate user accounts.

5.7.2 How to access

Follow the steps bellow to access the User Management:

• Click on the Account icon (1), go to the Administrative option (2) and select the User
Management perspective (3).

5.7. User Management 168

SMARTUNIFIER User Manual, Release 1.7.0

• The User Management main view is visible.

Note: The User Management can only be accessed by user accounts with an administrator role
assigned.

5.7.3 Add a new user

This procedure describes how to create a new user account.

• Select the SMARTUNIFIER User Management perspective (1).

5.7. User Management 169

SMARTUNIFIER User Manual, Release 1.7.0

• Click the “Add User” button (2).

• In the “Add User” view provide the following information (3):

– Provide a user id, first and last name

– Optionally, provide an e-mail address

– Set a preferred language for the SMARTUNIFIER Manager.

• The role defines the permission of the user. It is mandatory to assign a role for the user. The
following roles are available for use in the SMARTUNIFIER.

– Administrator: Full read and write access for the SMARTUNIFIER Configuration and
Administration.

– Reader: Only read access for the SMARTUNIFIER Configuration

– Writer: Read and write access for the SMARTUNIFIER Configuration

• Choose the account status: Active or Inactive.

– Active: User account is activated and ready to use.

– Inactive: User account is deactivated and cannot be used until it is activated again.

• Set an initial password for the first login of the new user.

• After all mandatory fields are filled in, click the “Save” button (4).

5.7. User Management 170

SMARTUNIFIER User Manual, Release 1.7.0

5.7.4 Edit a user

This procedure describes how to edit an existing user account.

• Select the SMARTUNIFIER User Management perspective (1).

• Click the “Edit” button (2).

In the “Edit” view the user account can be redefined (3).

5.7. User Management 171

SMARTUNIFIER User Manual, Release 1.7.0

• update the user details: user id, first and last name, email address

• change the language

• edit the user permission: Administrator, Writer or Reader

• activate or inactivate the user account

• change the password

• After editing, click the “Save” button (4).

5.7.5 Delete a user

This procedure describes how to delete a user account.

• Select the SMARTUNIFIER User Management perspective (1).

• Click the “Delete” button (2).

5.7. User Management 172

SMARTUNIFIER User Manual, Release 1.7.0

Confirm by selecting the “Delete” button (3).

The user account is deleted and no more visible in the SMARTUNIFIER User Management perspec-
tive.

5.8 Logging Configurations

Log files in SMARTUNIFIER are generated using the log4j framework. The Logging Configuration
features enables to create new log Levels configurations that can be selected when deploying a
Communication Instance.

5.8.1 How to access

Follow the steps below to access the feature:

• Click on the Account icon (1), go to the Administrative option (2) and select the Logging
Configurations perspective (3).

5.8. Logging Configurations 173

https://logging.apache.org/log4j/2.x/

SMARTUNIFIER User Manual, Release 1.7.0

• Logging Configurations main view is visible, as seen below.

• There are four predefined log4j configurations that can be used as template when creating a
new log level.

Note: The predefined log4j configurations can not be edited or deleted.

Note: This feature can be only used by users with the administration role.

5.8. Logging Configurations 174

SMARTUNIFIER User Manual, Release 1.7.0

5.8.2 Add a new logging file

Follow the steps below to add a new log4j configuration file:

• Select the Logging Configurations perspective (1).

• Click on the “Add” button (2).

• Input the file Name (3) and the configuration (4).

• Click on the Save and Close button to exit (5).

5.8. Logging Configurations 175

SMARTUNIFIER User Manual, Release 1.7.0

5.8.3 Edit a logging file

Follow the steps below to edit a log4j configuration file:

• Select the Logging Configurations perspective (1).

• Click on the “Edit” button (2).

• Edit and click on the Save and Close button to exit (3).

5.8. Logging Configurations 176

SMARTUNIFIER User Manual, Release 1.7.0

5.8.4 Delete a logging file

Follow the steps below to delete a log4j configuration file:

• Select the Logging Configurations perspective (1).

• Click on the “Delete” button (2).

• To confirm, click on the Delete button (3).

5.9 Extensions

Note: Please contact Amorph Systems for guidance on how to enable and use extensions.

5.9. Extensions 177

SMARTUNIFIER User Manual, Release 1.7.0

5.9.1 OpcUa Model Import

SMARTUNIFIER provides the possibility to generate an OpcUa Information Model using a XML-file
or connecting to the OpcUa server.

Create a new Information Model (OPCUA)

Follow the steps described below to generate an Information Model:

• Select the SMARTUNIFIER Information Model Perspective (1).

• Click on the Extensions button (2).

• Select the OpcUa model generator: ADD option (3).

OpcUa Nodeset XML Import

• Select the UA Nodeset XML Import option (4).

• Provide the following mandatory information: Group and Name (5).

• Select the type of the Information Model Node and provide a Name (6) :

– Model - the OpcUa data is converted inside the root model node

– Event - the OpcUa data is converted inside an Event node type

– Variable - the OpcUa data is converted inside a Variable node type

• Paste the content from the XML file (7).

• To finish, click on the Save Button (8).

5.9. Extensions 178

SMARTUNIFIER User Manual, Release 1.7.0

• The Information Model is generated.

OpcUa Direct Import

• Select the OpcUa Import option (4).

• Provide the following mandatory information: Group and Name (5).

• Input the Namespace Index (6).

• Click on the Add identifier name button and provide an Identifier Name (7).

• Provide the server details (8):

– Security Policy

– IP address

– TCP port

– Endpoint path

5.9. Extensions 179

SMARTUNIFIER User Manual, Release 1.7.0

• To finish, click on the Save Button (9).

• The Information Model is generated.

Update an existing Information Model (OPCUA)

Follow the steps described below to update an Information Model:

• Open an Information Model to edit and click on the Extensions button (1).

• Select the OpcUa model generator: UPDATE option (2).

5.9. Extensions 180

SMARTUNIFIER User Manual, Release 1.7.0

OpcUa Nodeset XML Import (Update)

• Select the UA Nodeset XML Import option (3).

• Update the Type and the Name (4).

• Paste the updated content from a XML-file (5).

• To finish, click on the Save button (6).

5.9. Extensions 181

SMARTUNIFIER User Manual, Release 1.7.0

OpcUa Direct Import (Update)

• Select the OpcUa Import option (3).

• Input the Namespace Index (4).

• Click on the Add identifier name button and provide an Identifier Name (5).

• Provide the server details (6):

– Security Policy

– IP address

– TCP port

– Endpoint path

• To finish, click on the Save Button (7).

5.9. Extensions 182

SMARTUNIFIER User Manual, Release 1.7.0

5.9.2 JSONModel Import

SMARTUNIFIER provides the possibility to generate an Information Model using a JSON-file.

Create a new Information Model (JSON)

Follow the steps described below to generate an Information Model:

• Select the SMARTUNIFIER Information Model Perspective (1).

• Click on the Extensions button (2).

• Select the Json model generator: ADD option (3).

• Provide the following mandatory information: Group and Name (4).

• Click on the Add item button (5).

• Select the type of the Information Model Node (6):

– Model - the Json data is converted inside the root model node

5.9. Extensions 183

SMARTUNIFIER User Manual, Release 1.7.0

– Event - the Json data is converted inside an Event node type

– Variable - the Json data is converted inside a Variable node type

– Command - the Json data is converted inside a Command node type

• Enter a Name (7).

• Paste the content from a Json file (8).

Note: Make sure to copy the JSON object { }.

• To finish, click on the Save Button (9).

• The Information Model is generated.

5.9. Extensions 184

SMARTUNIFIER User Manual, Release 1.7.0

Update an existing Information Model (JSON)

Follow the steps described below to update an Information Model:

• Open an Information Model to edit and click on the Extensions button (1).

• Select the Json model generator: UPDATE option (2).

• Click on the Add item button (3).

• Update the Type (4) and the Name (5).

• Paste the updated content from a Json-file (6).

• To finish, click on the Save button (7).

5.9. Extensions 185

SMARTUNIFIER User Manual, Release 1.7.0

5.9.3 AWS IoT SiteWise Model Export

This extension allows you to export an SMARTUNIFIER Information Model to AWS IoT SiteWise.

How to access

To access the AWS IoT SiteWise extension, click on the Account icon (1), go to the Administrative
option (2) and select the Extensions (3).

Then select the configuration button of the (4)

5.9. Extensions 186

SMARTUNIFIER User Manual, Release 1.7.0

How to export Information to AWS IoT SiteWise

We recommend to have one user dedicated for SMARTUNIFIER.

Attach the following permission:

Policy ARN Description
arn:aws:iam::aws:policy/AWSIoTSiteWiseFullAccess Provides full access to IoT Site-

Wise.

If you do not have already an access key available you have to create a new access key. We recom-
mend to create a new access key after 90 days.

Follow the steps described below to export a the SMARTUNIFIER Information Model:

• Configuration of the extension (1):

– Select the region of the AWS Iot SiteWise service you are using

– Enter the access key id and the secret access key id

– Select the Information Model you want to export

• Click on the Run button to execute the export (2)

5.9. Extensions 187

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

CHAPTER

SIX

GETTING HELP

Having trouble? We would like to help!

• In case of malfunctioning SU Instances check out the Troubleshooting section

• Try the FAQ - it’s got answers to regularly asked questions

• Check out the Glossary if some terminology is not clear

6.1 Troubleshooting

6.1.1 Communication Instances

Determine if there is an issue with the deployment environment (VM, Cloud, other Hardware)
where the Communication Instance is operated on.

• In case of a HW problem setup a new HW (or switch to a spare HW). Ensure to place the
correct security certificates on the new HW. Perform a new deployment of a new SU Instance
with SU Manager on the new HW.

• In case, the HW is operating correctly navigate to the log file of the deployed instance
./SmartUnifierManager/deploy/<deployment-id> and check for error messages.

– If there is a configuration issue which can be fixed:

* Undeploy the Communication Instance

* Fix the configuration issue accordingly

* Deploy and start the Communication Instance

– If there is a configuration issue which can not be fixed save the log files and contact
Amorph Systems through the Support Portal for further assistance

188

https://amorphsys.atlassian.net/servicedesk/customer/portals

SMARTUNIFIER User Manual, Release 1.7.0

6.1. Troubleshooting 189

SMARTUNIFIER User Manual, Release 1.7.0

6.1.2 SMARTUNIFIER Manager

Determine if it is a HW problem on the HW where SMARTUNIFIER Manager is operated.

• In case of a HW problem, setup a new HW or switch to a spare HW. Perform installation of
SU Manager and Repository from latest backup and re-start the Manager on the new HW.

• In case HW is operating correctly stop and restart the Manager

• If the Manager is still not running correctly:

– Create a Backup

– Perform a complete uninstall of the Manager

– Install the Manager with the Repository from the latest backup and start the Manager

• If the Manager is still not working navigate to ./SmartUnifierManager/log and save the log
files (debug.log and info.log) and contact Amorph Systems through the Support Portal for
further assistance

6.1. Troubleshooting 190

https://amorphsys.atlassian.net/servicedesk/customer/portals

SMARTUNIFIER User Manual, Release 1.7.0

6.1. Troubleshooting 191

SMARTUNIFIER User Manual, Release 1.7.0

6.2 FAQ

Does SMARTUNIFIER provide caching/buffering of data?

Yes, SMARTUNIFIER is capable of supporting caching of messages using file buffer (Spool) for
message transfer to external middleware like MQTT. This functionality can be provided as part of a
SMARTUNIFIER Communication Channel and dependent on the used communication protocol of
the respective channel.

Is it possible to set different buffering options for different channels?

Yes, each communication channel of SMARTUNIFIER can provide a different buffer size and further
options.

Does SMARTUNIFIER enable data pre-processing, cleansing, filtering and optimization of data?

Yes, this is a core feature of SMARTUNIFIER. SMARTUNIFIER provides powerful capabilities
for any kind data preprocessing, cleansing, filtering and optimization. The capabilities of
SMARTUNIFIER in this respect range from simple calculations, unit conversions, type conversions
and reformatting up to arbitrary processing algorithms of any complexity.

Does SMARTUNIFIER enable data aggregation?

Yes, SMARTUNIFIER enables data aggregation and reformatting with any level of complexity.

Does SMARTUNIFIER provide short term data historian features?

Yes, historic telemetric data (of variable time horizons; size limited by used HW) can be mon-
itored by usage of SMARTUNIFIER‘s logs which can record all communication activities of a
SMARTUNIFIER Instance incl. telemetric data. SMARTUNIFIER‘s Log data can afterwards be
forwarded by usage of a dedicated Communication Channel to any (and also multiple) upper-level
monitoring or analytics system. Alternatively SMARTUNIFIER‘s Logs can be accessed directly by
any external IT application (remote access to HW device is required).

Yes, SMARTUNIFIER can create any number of OPC-UA Servers and/or Clients within just one
Communication Instance.

6.2. FAQ 192

SMARTUNIFIER User Manual, Release 1.7.0

Does SMARTUNIFIER support standard number of connections to OPC-UA Clients?

Yes, SMARTUNIFIER supports a virtually unlimited number of client connections per OPC-UA
Server. Physically the number of connections is limited by number of subscriptions per session,
number of data objects and size per subscription as well as by HW and network constraints.
SMARTUNIFIER allows to operate multiple OPC-UA Servers and/or OPC-UA Clients within each
single SMARTUNIFIER instance for northbound and/or southbound communication.

Does SMARTUNIFIER support brokering to MQTT Server?

Yes, SMARTUNIFIER supports any number of MQTT connections. One single SMARTUNIFIER
Instance can connect to one or multiple MQTT brokers (e.g., for different target systems) and is
able to communicate bi-directional.

Which southbound protocols are offered with SMARTUNIFIER?

SMARTUNIFIER supports many protocols like e.g.,

• Siemens S7, S7-2

• OPC-UA

• Beckhoff

• MQTT

• Modbus-TCP

• file-based (different formats like CSV, XML, JSON, any binary format)

• SQL

. . . and many more to come continuously. Specific protocols can be provided based on customer
request. Therefore please contact Amorph Systems (www.amorphsys.com).

Does SMARTUNIFIER enable pre-aggregation of additional sensor data and/or more devices (rule
based), for e.g., temperature monitoring?

Yes, SMARTUNIFIER allows to connect any number of telemetric data sources to a SMARTUNIFIER
Instance. Rule-based pre-aggregation and pre-processing of additional sensor data is supported
with any level of complexity. This ranges from simple pre aggregation/pre-processing up to complex
utilization of advanced AI or ML algorithms.

6.2. FAQ 193

SMARTUNIFIER User Manual, Release 1.7.0

Does SMARTUNIFIER support processing of active cloud commands? (e.g., SystemManager AWS
/ AWS Agent)

Yes, SMARTUNIFIER provides a RESTful API to execute Shell Commands (e.g., Start/Stop Instance,
etc.). Thus, active cloud commands are supported. In addition, also commands from other external
IT-Systems (e.g., MES, ERP, AWS Systems Manager etc.) are possible. Furthermore if required
SMARTUNIFIER can be fully executed and operated within Cloud Environments (e.g., within AWS
Cloud).

Which northbound protocols are supported by SMARTUNIFIER?

SMARTUNIFIER supports many northbound protocols, like e.g.,

• OPC-UA

• MQTT

• WebSphere

• HTTP / REST

• any file based protocol

• SQL/any database

• Splunk

• Vantiq

. . . and many more to come continuously. Specific protocols can be provided based on customer
request. Therefore, please contact Amorph Systems (www.amorphsys.com).

Does SMARTUNIFIER support international naming standards (example: EUROMAP77, PackML)?

Yes, SMARTUNIFIER is specifically designed to strongly support the incorporation of international
standards (e.g., EUROMAP 77, 82, 83, 84, AutomationML, PackML, DFQ, SEMI SECS/GEM etc.) as
well as company standards, by offering the capability to be able to build up specific SMARTUNIFIER
Information Models complying with these standards and incorporating full data semantics. There
will be a one-time effort to implement such a standard in SMARTUNIFIER as a respective Infor-
mation Model and afterwards this Standard can be used for any communication across the whole
customer IT Infrastructure. Also this includes flexible mapping from legacy protocols to new stan-
dard protocol and vice versa.

6.2. FAQ 194

SMARTUNIFIER User Manual, Release 1.7.0

Does SMARTUNIFIER offer the ability to integrate with other systems and applications through
REST Server APIs and Web Services for Operational purpose?

Yes, SMARTUNIFIER features a REST API for operational purpose (e.g., instance start/stop service,
configuration etc.)

Does SMARTUNIFIER offer a way to realize a flexible, configurable dataflow?

Yes, SMARTUNIFIER features a configurable and highly performant rule-based engine (SmartMap-
pings) based on different northbound and/or southbound input sources for realizing any dataflow
(workflow) that is required in industrial environments. This covers communication sequences for
identification, processing start, processing execution, processing end, results data pro-vision as
well as detailed process data provision. Also commands from any upper-level IT-System can be
processed and further transmitted to the production equipment (e.g., recipe management, NC pro-
gram transfer etc.) External data flow engines / visualization apps (e.g., Node-Red, Grafana) can
be connected.

Does SMARTUNIFIER enable Central Software Management?

Yes, all Information Models, Mappings and Deployment Features can be managed centrally. Fur-
thermore, SMARTUNIFIER features an easy to use REST API for operational purpose (e.g., instance
start/stop service, configuration etc.).

Does SMARTUNIFIER enable Container Deployment?

Yes, SMARTUNIFIER operation and deployment is fully based on Container-Technology (Docker).
SMARTUNIFIER Manager and Instances can be operated and deployed inside Docker Containers
to any End Point within the network running Docker environment.

Which Operating System SMARTUNIFIER is supporting?

SMARTUNIFIER runs on Windows, Linux, Mac and other OS supporting Java RT and Docker.

Does SMARTUNIFIER support onPrem Edge-Analytics?

Yes, SMARTUNIFIER can be connected to any Edge-Analytics System SMARTUNIFIER Logs can
provide detailed information about all communication activities. These log data can either be
provided by a dedicated Communication Channel to any upper level Analytics System (in any
required format) or can be made locally accessible to any agent running locally on the HW.

6.2. FAQ 195

SMARTUNIFIER User Manual, Release 1.7.0

Does SMARTUNIFIER support DevOps CI/CD Pipeline for installations and update?

Yes, SMARTUNIFIER supports remote installation/update of Software from SMARTUNIFIER Man-
ager via Docker Registry SMARTUNIFIER Instances (running in Docker Containers) can be up-
dated, monitored and controlled remotely. Docker registry is also accessible from external systems
if required.

Does SMARTUNIFIER enable Software Scalability?

Yes, SMARTUNIFIER can scale from connection of one single equipment/device to virtually any
number of equipment/devices by means of its decentralized architecture.

Does SMARTUNIFIER support the architecture of distributed systems?

Yes, SMARTUNIFIER itself is a fully distributed and scalable IT system. With this architecture
SMARTUNIFIER is able to collaborate in any small or large IT environment. SMARTUNIFIER is
open to reliably collaborate in large sites.

Does SMARTUNIFIER provide the ability to directly communicate with other Devices or IT-
Systems through standard protocols and also supports Load-Balancing?

Yes, SMARTUNIFIER can communicate with any other Devices or IT-Systems and also address load
balancers for optimized feeding of data to any message brokers or data forwarder.

Does SMARTUNIFIERprovide the ability for data to be ingested as a consolidatedbatch (File Trans-
fer)?

Yes, SMARTUNIFIER can use any file in any format as input source and also as output destination.

Does SMARTUNIFIER provide the ability to create custom connectors to ingest data fromarbitrary
sources?

Yes, the capability to be able to realize custom connectors for any data source is one of the core
elements of SMARTUNIFIER‘s architecture.

Is SMARTUNIFIER able to push operational data to an Edge-Gateway?

Yes, SMARTUNIFIER can receive operational data from any device or IT-System and push it to an
Edge-GW. E.g., OPC-UA, MQTT and HTTP/REST are supported. Also, many other protocols can be
used therefore.

6.2. FAQ 196

SMARTUNIFIER User Manual, Release 1.7.0

Does SMARTUNIFIER provide Software Monitoring?

Yes, each SMARTUNIFIER Instance creates detailed logs that document every communication ac-
tivity. These logs can be made accessible to any external system e.g., by a dedicated monitoring
communication channel. Moreover, SMARTUNIFIER Manager comes with a built-in Monitoring
Dashboard that allows monitoring of the distributed SMARTUNIFIER Instances.

Does SMARTUNIFIER support Monitoring integration?

Yes, this is possible; Each SMARTUNIFIER Instance creates detailed logs that document every com-
munication activity. These logs can be made accessible to any external system e.g., by a dedicated
monitoring communication channel. In addition, SMARTUNIFIER is able to send any kind of mon-
itoring message (e.g., based on status changes or other events (e.g., time triggered) to any (or
multiple) upper level monitoring system in any required format.

Does SMARTUNIFIER provide certificate handling?

Yes, SMARTUNIFIER can handle certificates and establish state-of-the-art secured connections (e.g.,
TLS, secured MQTT, secured OPC-UA, etc.).

Is it possible with SMARTUNIFIER to limit access to data?

Yes, SMARTUNIFIER Instances work on independent Windows/Linux computer units. Data may
be stored temporarily on these HW devices as logs or for buffer (cache) purposes. This temporary
data can be protected by assigning the HW with appropriate access rights and user roles.

Does SMARTUNIFIER support services for security supervision and security monitoring?

Yes, SMARTUNIFIER creates detailed logs regarding all communication activities (and other ac-
tivities) it performs. With SMARTUNIFIER it is possible to integrate with any external security
supervision/monitoring system (e.g., Splunk) and provide on-line log files (in any required format)
to these systems by usage of a dedicated monitoring communication channel.

Does SMARTUNIFIER support End-to-End transport encryption (to Northbound and South-
bound)?

Yes, SMARTUNIFIER can support End-to-End transport encryption for southbound and northbound
communication channels.

6.2. FAQ 197

SMARTUNIFIER User Manual, Release 1.7.0

Does SMARTUNIFIER enforce secure individual authentication for all users?

Yes, SMARTUNIFIER supports individual user authentication.

Does SMARTUNIFIER support Windows Active Directory (AD)?

Yes, SMARTUNIFIER supports Windows Active Directory.

Does SMARTUNIFIER support a (configurable) secure remote access?

Yes, Secure remote access to SMARTUNIFIER Manager and SMARTUNIFIER Instances is possible
by standard Windows or Linux tools (e.g., SSH).

Can SMARTUNIFIER protect unsecured Shop Floor devices fromoffice network through isolation?

Yes, a SMARTUNIFIER Instance can be deployed locally near an equipment/device and map any
unsecured equipment/device interface into a secured protocol (e.g., OPC-UA, MQTT). This way
“unsecured data streams” coming from an equipment/device can be transferred to any northbound
system in a secured way (isolation of the equipment/device). The same principle can be also
applied when sending control parameters (e.g., screwer params, NC programs, recipes, . . .) or
commands from a northbound system to the equipment/device.

Does SMARTUNIFIER support malware protection concepts (e.g., support of standard Anti-Virus
Software)?

Yes, SMARTUNIFIER works with any standard malware protection software incl. McAffee, NOD
and many others.

Is SMARTUNIFIER secure by design (e.g., secure coding guidelines, use of open source code, pen-
testing)?

SMARTUNIFIER was developed according to state-of-the-art coding principles and on request we
are willing to let perform any checks, verifications, pen testing as required to validate the software.
Especially for realizing communication channels and implementing protocols, state-of-the-art Open
Source Libraries are used and constantly updated to the newest versions available.

6.2. FAQ 198

SMARTUNIFIER User Manual, Release 1.7.0

Does SMARTUNIFIER support a range of transmission/infrastructure protocols (e.g., IPV4/IPv6)?

Yes, with SMARTUNIFIER (depending on used HW) IP4/IP6 are supported.

• LAN: Up to 4x Gbit Ethernet Intel i211

• Wireless LAN: 802.11ac dual antenna + BT 4.2

• Cellular communication: LTE/WCDMA/GSM/GNSS

USB: Up to 8 ports, 2x USB 3.0, Up to 6x USB 2.0

• RS232 serial port

Also other transmission/infrastructure protocols can be supported on request but may require ad-
ditional HW.

Does SMARTUNIFIER provide the ability to handle intermittent connectivity of sources
(data/event redelivery and failure modes)?

Yes, intermittent connectivity of sources can be handled by SMARTUNIFIER Communication Chan-
nels. Based on rules, data/event redelivery can take place, failure modes can be activated, and
escalation procedures to northbound systems can be triggered.

Does SMARTUNIFIER reduce unnecessary traffic on shop floor network to protect device inter-
faces from traffic overload?

Yes, a SMARTUNIFIER instance can be deployed locally nearby the equipment on any suitable HW
device. The SMARTUNIFIER instance can then be configured to communicate to the connected
southbound equipment/devices by using a separate physical network port and this way isolate the
device from unnecessary traffic coming from the northbound network.

Does SMARTUNIFIER support low Latency between Southbound and Northbound Interfaces?

Yes, SMARTUNIFIER provides high performance / low latency by its distributed architecture con-
sisting out of small SMARTUNIFIER Instances (i.e., no central bottlenecks like e.g., a middleware
broker/database). Furthermore, SMARTUNIFIER features an integrated compiler that creates na-
tive Bytecode for the interfaces to be executed within the SMARTUNIFIER Instances. This makes
the SMARTUNIFIER highly performant, since no slow scripting language nor any slow interpreter
is used to provide the connectivity functionality.

6.2. FAQ 199

SMARTUNIFIER User Manual, Release 1.7.0

Is it possible with SMARTUNIFIER to ensure a consistent setting of time stamps for events (NTP)?

Yes, this is possible.

Is it possible to use UNICODE for operational data?

Yes, it is possible to use UNICODE with SMARTUNIFIER (e.g., for OPC-UA).

Is stability of SMARTUNIFIER s API given? Is the API stable across releases?

Yes, SMARTUNIFIER is a standard product from Amorph Systems. Interface stability is given and
stable across new product releases. Furthermore, interfaces are versioned and under controlled
release management (i.e., different versions of interface, Information, Models and Mappings can
be maintained and deployed in a controlled mode).

Which tools for development, deployment and error analysis can be used with SMARTUNIFIER ?

For extension, deployment and error analysis of SMARTUNIFIER (e.g., development of new Infor-
mation Models, pre-processing, aggregation etc.) widely-used and accepted state-of-the-art devel-
opment environments and powerful standard tools may be used, e.g., Eclipse, Maven/sbt, Jenkins,
Docker. For Error Analyses detailed logs created by SMARTUNIFIER can be used and analysed with
any analytics tools.

What is the cost model of SMARTUNIFIER ?

Please refer to Amorph Systems (www.amorphsys.com) for prices for SMARTUNIFIER . In general,
the following policies apply:

• SMARTUNIFIER Manager is free of charge

• For SMARTUNIFIER Instances a yearly license fee is charged

Does Amorph Systems offer reliable support for SMARTUNIFIER ?

For many years, Amorph Systems is providing first class support and intensive care to all of its
customers. This covers all products and solutions that were delivered and operated in Industrial
Areas as well as in Air Traffic Industry. For customer references please refer to Amorph Systems
(www.amorphsys.com).

6.2. FAQ 200

SMARTUNIFIER User Manual, Release 1.7.0

What support levels (SLAs) are supported?

Different levels of services (8x5, 8x7 up to 24x7) are available upon request from Amorph Systems
(www.amorphsys.com).

Does SMARTUNIFIER support multiple languages?

Yes, SMARTUNIFIER can support multiple languages. Currently the GUI is available in English
and German language. In case more languages are required, please contact Amorph Systems
(www.amorphsys.com)

Does Amorph Systems provide relevant training capabilities for operating SMARTUNIFIER and for
engineering of Information Models and Mappings?

Yes, SMARTUNIFIER is a simple to use standard product and was specifically designed as a power-
ful tool to enable the end customers themselves to provide seamless equipment/device as well as
IT-Systems interconnectivity within their industrial environments.

Therefore, Amorph Systems trains customers to configure, deploy and operate SMARTUNIFIER
in their environments. Moreover, we can give advanced trainings, so that the customers can also
implement new interfaces, new channels, new, Information Models and new Mappings on their
own.

6.3 Glossary

Arrays An Array (as an Information Model Node Type) is a container object that holds a fixed
number of values of a single type.

Configuration Components Configuration Components are Information Models, Communication
Channels, Mappings, Device Type and Communication Instances, used to realize an integra-
tion scenario.

Commands Commands (as an Information Model Node Type) are functions like the methods of a
class in object-oriented programming. The scope of a Command is bounded to the Informa-
tion Model it belongs.

Communication Channels Communication Channels or simply Channels, refer to a transmission
medium. A Channel is used to convey information from one or several senders (or trans-
mitters). Communicating data from one location to another requires some form of pathway
or medium. These pathways are called Communication Channels, and the information is
transmitted with the help of communication protocols. Each Information Model has one or
many Channels, and each Information Model can choose which Channel it subscribes to. The
information is transmitted through the Communication Channels in both directions: from the
external system to the SMARTUNIFIER application and vice versa.

Custom Types Custom Data types are defined by the user for a Node Type.

6.3. Glossary 201

SMARTUNIFIER User Manual, Release 1.7.0

Data Types Each Node Type has a Data Type. Data Types can be either a Simple Type or a Custom
Type - depending on the Node Type.

Deployments With the SMARTUNIFIER Deployment capability Instances can be deployed to any
IT resource (e.g., Equipment PC, Server, Cloud) suitable to execute a SMARTUNIFIER In-
stance.

Deployment Endpoints Deployment Endpoints are used to identify the location of a Deployment
(e.g., AWS Fargate, Docker)

Device Types Device Type contains one or multiple Mappings. Each Mapping contains one
or multiple Information Models and its associated Communication Channel. Within a
SMARTUNIFIER Device Type it is possible to overwrite existing Communication Channel con-
figurations. Device Types are especially important, when having to connect several similar
equipment or devices that share the same communication parameters. In these cases it is
sufficient to define only one Device Type and the settings of this Device Type can be reused
across all Instances.

Events Events (as an Information Model Node Type) represent an action or occurrence recog-
nized by SMARTUNIFIER, often originating asynchronously from an external data source
(e.g., equipment, device). Computer events can be generated or triggered by external IT sys-
tems (e.g., received via a Communication Channel), by the SMARTUNIFIER itself (e.g., timer
event) or in other ways (e.g., time triggered event).

File Consumer This Communication Channels offers the capability to read-in files (e.g., CSV, XML,
and JSON). The File Consumer monitors an input folder that is specified in the configuration.

File Tailer This Communication Channels offers the capability to read-in files (e.g., CSV, XML, and
JSON). The File Tailer monitors a specific file, which is specified in the configuration.

InfluxDB This Channel offers connectivity to an InfluxDB. InfluxDB is an open-source time series
database.

Information Models Information Model describes the communication related data, which is avail-
able for a device or IT system. Each device or IT system is represented by an Information
Model.

Instances An Instance represents an application that handles the connectivity. Instances can be
deployed to any suitable IT resource (e.g., Equipment PC, Server, Cloud), and provide the
connectivity functionality configured. Therefore, a SMARTUNIFIER Instance uses one or
multiple Mappings and selected Communication Channels from a previously defined Device
Type.

Lists A List (as an Information Model Node Type) representing collections of Node Types (e.g.,
Variables, Properties, Arrays, and other Lists).

Mappings Mapping represents the SMARTUNIFIER component that is defining when and how to
exchange/transform data between two or multiple Information Models. In other words it is
acting as a translator between the different Information Models. One Mapping consists of
one or multiple Rules.

MQTT This Communication Channel offers the capability to send data using the messaging pro-
tocol MQTT. MQTT is a lightweight publish/subscribe messaging transport for connecting
remote devices with minimal network bandwidth.

6.3. Glossary 202

SMARTUNIFIER User Manual, Release 1.7.0

Node Types Node Types are elements within an Information Model. Node Types are Variables,
Properties, Events, Commands and also collections such as Arrays and Lists. Each Node Type
has a Data Type that defines if the Node Type is a predefined Data Type or a custom Data
Type.

OPC-UA Is a machine to machine communication protocol for industrial automation.

Predefined Types Predefined Data Types (e.g., String, Integer, Double, etc.) are available for the
definition types - Variables, Properties, Arrays, Lists (e.g., String, Integer, Boolean).

Properties Properties (as an Information Model Node Type) are used to represent XML attributes.

REST Client This Communication Channels offers the capability to consume and operate with re-
sources exposed by REST Servers.

REST Server This Communication Channels offers the capability to provide resources employing
the HTTP communication protocol.

Rules A Rule contains a Trigger that defines when the exchange/transformation takes place and a
list of actions that are defining how the exchange/transformation is done.

Manager The Web application SMARTUNIFIER Manager is used to create and monitor
SMARTUNIFIER Instances.

Source In the Mapping sources are Node Types that are mapped to targets.

SQL DB This Communication Channel offers the capability to connect to a SQL Databases (e.g.,
MariaDB, SQLServer, PostgreSQL, ORACLE, HSQLDB, and DB2).

Target In the Mapping targets are Node Types that receive data assigned from a source.

Trigger The Trigger defines when the exchange/transformation data between two or multiple In-
formation Models takes place.

User Management User Management allows the administrator to create users accounts, to assign
permissions as well as to activate or to deactivate the user accounts.

Variables Variables (as an Information Model Node Type) are used to represent values.

6.3. Glossary 203

	About SMARTUNIFIER
	What is SMARTUNIFIER
	What does SMARTUNIFIER do
	Important Use Cases with SMARTUNIFIER
	Anything-To-Anywhere IT Interface
	Reusable Interfaces and Interface Models
	Integrate Legacy Equipment
	Implement Fab Communication Scenario
	Provide Base for Remote Maintenance and Health Monitoring
	Migrate to Industry 4.0
	Allow Unlimited Scalability
	Enable Internet of Things

	Connectivity Endpoints and Data Formats
	Connectivity Endpoints / Communication Protocols
	Data Formats

	How to integrate with SMARTUNIFIER
	Information Models
	What are Information Models
	How to create a new Information Model
	Node Types
	Variables
	What are Variables
	How to create a Variable

	Properties
	What are Properties
	How to create a Property

	Events
	What are Events
	How to create an Event

	Commands
	What are Commands
	How to create a Command

	Arrays
	What are Arrays
	How to create an Array

	Lists
	What are Lists
	How to create a List

	Data Types
	How to create a Variable as a Simple Type
	How to create a Variable as a Custom Type

	Communication Channels
	What are Channels
	How to create a new Channel
	Channel Types and Configuration
	File-based
	File Reader
	Characteristics
	How to use File Reader with CSV

	File Tailer
	Characteristics
	How to configure the File Tailer (CSV) Channel

	Databases
	InfluxDB
	Characteristics - InfluxDB
	How to configure InfluxDB

	SQL Database
	Characteristics - SQL Database
	How to configure the SQL-Database

	Protocols
	MQTT
	Characteristics - MQTT
	Configuration - MQTT Channel

	Modbus
	Characteristics - Modbus
	Configuration - Modbus

	OPC-UA
	Characteristics - OPC-UA
	Configuration - OPC-UA Client

	REST
	Characteristics - REST
	Configuration - REST Server
	Configuration - REST Client

	SECS/GEM
	Characteristics - SECS/GEM
	Configuration - SECS/GEM Client

	AWS SiteWise IoT
	Characteristics - AWS IoT SiteWise
	Configuration - AWS IoT SiteWise

	General Configurations
	Framework Configuration
	Event Logging

	Mappings
	What are Mappings
	How to create a new Mapping
	How to create Rules
	Graphical
	How to create a Rule
	Single Rule
	Trigger Types
	Tree Member
	Fixed Rate Scheduler
	Fixed Delay Scheduler
	Actions
	Simple Assignment
	Complex Assignment
	Actions with Conditions
	Multi Rule

	Code-based Rules
	Basics - Rule construct
	Trigger Types
	Rule Scheduler

	Same Type Assignments
	Logging
	Compiling
	Examples
	Variable to Event Mapping
	Event to Variable Mapping
	Commands Mapping
	Mapping with Lists

	Target Source Combinations
	Simple
	Complex

	Device Types
	What are Device Types
	How to create a new Device Type

	Communication Instances
	What are Instances
	How to create a new Instance

	Configuration Component Management
	Naming Convention
	Group Filter
	Component Version Control
	How to release configuration components

	Operations
	Add
	Edit
	Apply
	Exit Editing
	Save
	Save and Close
	Search
	Sort
	Reload
	Import
	Export
	Clone
	Delete
	Bulk Action

	Deployment
	What is a Deployment
	Deploy Locally
	Deploy with Docker
	Deploy with SSH
	Deploy with AWS Fargate
	Prerequisites
	Specialized Knowledge
	AWS Resources
	Amazon S3 - Bucket
	AWS VPC and Subnets
	Amazon ECS - Cluster
	AWS ECR - Repository
	IAM - User
	IAM Role - AWS CodeBuild Service Role

	Architecture
	Sequence of events

	Planning the Deployment
	Task Sizing

	Deployment Steps
	Deployment of the SMARTUNIFIER Instance
	Monitoring

	How to Deploy, Run and Operate a Deployed Instance
	How to Deploy an Instance
	How to Run an Instance
	How to Stop an Instance
	How to Delete a Deployment of an Instance
	How to Un-deploy an Instance
	How to Edit a Deployment of an Instance

	Notifications
	How to access Notifications
	How to manage Notifications

	How to monitor a deployed Instance
	Log Viewer
	Log Levels
	Log Viewer operation

	Dashboard

	Additional Options
	Encryption of Communication Instances
	Protect Communication Instances
	VM Arguments

	Administration
	Active Directory Integration (ADI)
	AD Group Mapping

	Backup and Restore
	How to access
	Backup
	Restore
	Manager Backup

	Channel Types Manager
	How to access
	About Layers
	How to create a new Channel Type

	Docker Java Image Manager
	How to access
	Add a New Docker Java Image
	Edit a Docker Java Image
	Delete a Docker Java Image

	Deployment Endpoints
	What are Deployment Endpoints
	How to access
	Deployment Endpoints Types
	Local
	Docker
	AWS
	SSH

	Deployment Endpoints States
	Deployment Endpoints Operations

	Credential Management
	How to access
	Add Credentials
	Edit Credentials
	Delete Credentials
	Using Credential Manager when configuring the Communication Channels

	User Management
	About User Management
	How to access
	Add a new user
	Edit a user
	Delete a user

	Logging Configurations
	How to access
	Add a new logging file
	Edit a logging file
	Delete a logging file

	Extensions
	OpcUa Model Import
	Create a new Information Model (OPCUA)
	OpcUa Nodeset XML Import
	OpcUa Direct Import

	Update an existing Information Model (OPCUA)
	OpcUa Nodeset XML Import (Update)
	OpcUa Direct Import (Update)

	JSON Model Import
	Create a new Information Model (JSON)
	Update an existing Information Model (JSON)

	AWS IoT SiteWise Model Export
	How to access
	How to export Information to AWS IoT SiteWise

	Getting Help
	Troubleshooting
	Communication Instances
	SMARTUNIFIER Manager

	FAQ
	Glossary

