
SMARTUNIFIER User Manual
Release 1.10.0

Amorph Systems GmbH

Jul 16, 2025

ABOUT SMARTUNIFIER

1 About SMARTUNIFIER 2
What is SMARTUNIFIER . 2
What does SMARTUNIFIER do . 3
Important Use Cases with SMARTUNIFIER . 4

Anything-To-Anywhere IT Interface . 4
Reusable Interfaces and Interface Models . 5
Integrate Legacy Equipment . 6
Implement Fab Communication Scenario . 7
Provide Base for Remote Maintenance and Health Monitoring 8
Migrate to Industry 4.0 . 9
Allow Unlimited Scalability . 10
Enable Internet of Things . 11

Getting Started . 12

2 Installation 14
Overview . 14
SMARTUNIFIER Setup . 14

Planning the Installation . 14
Windows . 16
Linux . 18
Mac OS . 19
Docker . 19
Product Information and Activation . 21
Credentials Management . 27
Enabling HTTPS . 28
External Version Control . 30
External Database . 31

3 How to integrate with SMARTUNIFIER 32
Information Models . 32

What are Information Models . 32
Contextualization . 33
How to create a new Information Model . 33
Node Types . 34
Data Types . 41
Structures Required by Channels . 42
Importing Data Structures . 43
Shortcuts . 44

Communication Channels . 44

i

What are Channels . 44
How to create a new Channel . 44
Channel Types and Configuration . 46
General Configurations . 105

Mappings . 106
What are Mappings . 106
How to create a new Mapping . 107
How to create Rules . 109

Device Types . 134
What are Device Types . 134
How to create a new Device Type . 134

Communication Instances . 136
What are Instances . 136
How to create a new Instance . 136

4 Configuration Component Management 139
Naming Convention . 139

Naming Examples . 140
Group Filter . 141
Validation . 142
Component Version Control . 143

How to release configuration components . 143
Operations . 144

Add . 144
Edit . 144
Apply . 144
Exit Editing . 145
Save . 145
Save and Close . 146
Search . 146
Sort . 147
Reload . 148
Import . 148
Export . 151
Clone . 151
Delete . 152
Bulk Action . 153

5 Deployment 156
Deployment Types . 156

Local and Agent Deployment . 157
How to Deploy, Run and Operate a Deployed Instance 159

How to Deploy an Instance . 159
How to Run an Instance . 159
How to Stop an Instance . 160
How to Delete a Deployment of an Instance . 160
How to Un-deploy an Instance . 160
How to Edit a Deployment of an Instance . 161
How to Redeploy a Deployment of an Instance 161

How to monitor Communication Instances . 162
Log Viewer . 162
Dashboard . 164

ii

Additional Options . 166
Encryption of Communication Instances . 166
Protect Communication Instances . 166
VM Arguments . 167

Notifications . 168
How to access Notifications . 169
How to manage Notifications . 169

6 Administration 171
Active Directory Integration (ADI) . 171

AD Group Mapping . 172
Alert Channels . 174

How to access . 174
Add an Email Channel . 176
Edit Alert Channels . 177
Delete Alert Channels . 177

Alerts Configuration . 177
How to access . 178
Add Alerts . 179
Edit Alerts . 180
Delete Alerts . 180

Backup and Restore . 180
How to access . 181
Backup . 181
Restore . 184
Manager Backup . 186

Channel Types Manager . 186
How to access . 187
About Layers . 188
How to create a new Channel Type . 188

Configuration Components Validation . 190
How to access . 190
How to Validate Artifacts . 192

Credential Management . 193
How to access . 193
Add Credentials . 195
Add Token . 196
Edit Credentials . 196
Delete Credentials . 197
Using Credential Manager when configuring the Communication Channels . . . 197

Docker Java Image Manager . 200
How to access . 201
Add a New Docker Java Image . 202
Edit a Docker Java Image . 202
Delete a Docker Java Image . 203

Deployment Endpoints . 203
What are Deployment Endpoints . 203
How to access . 203
Deployment Endpoints Types . 204
Deployment Endpoints States . 207
Deployment Endpoints Operations . 208

iii

Environment Variables . 209
How to access . 209
Adding an Environment Variable . 210
Using Environment Variables . 211

Extensions . 211
How to install extensions . 211
OpcUa Model Import . 212
JSON Model Import . 216
AWS IoT SiteWise Model Export . 219

Logging Configurations . 221
Accessing the Feature . 221
Add a New Logging Configuration . 222
Edit a Logging Configuration . 223
Delete a Logging Configuration . 223

User Management . 224
About User Management . 224
User Roles and Permissions . 224
How to access . 226
Add a new user . 226
Edit a user . 228
Delete a user . 229

7 Getting Help 231
Troubleshooting . 231

Communication Instances . 231
SMARTUNIFIER Manager . 233

FAQ . 235
Glossary . 242
What has changed in 1.9.x . 244

1.9.8 . 245
1.9.7 . 245
1.9.6 . 245
1.9.5 . 245
1.9.4 . 245
1.9.3 . 245
1.9.2 . 245
1.9.1 . 246
1.9.0 . 246

What has changed in 1.8.x . 247
What has changed in 1.7.x . 247

1.7.0 . 247
What has changed in 1.6.x . 248

1.6.0 . 248
What has changed in 1.5.x . 249
What has changed in 1.4.x . 250

1.4.0 . 250
What has changed in 1.3.x . 250

1.3.0 . 250
What has changed in 1.2.x . 251

1.2.0 . 251
What has changed in 1.1.x . 251

iv

1.1.6 . 251
1.1.5 . 252
1.1.4 . 252
1.1.3 . 253
1.1.2 . 253
1.1.1 . 253
1.1.0 . 254

What has changed in 1.0.x . 254
1.0.1 . 254
1.0.0 . 254

v

SMARTUNIFIER User Manual, Release 1.10.0

ABOUT SMARTUNIFIER 1

CHAPTER

ONE

ABOUT SMARTUNIFIER

You are new to SMARTUNIFIER?

• Learn about the SMARTUNIFIER connectivity platform

• Learn about the connectivity use cases you can address with SMARTUNIFIER

• Get started with your integration

What is SMARTUNIFIER

SMARTUNIFIER represents a powerful but very easy to use decentralized industrial connec-
tivity platform for interconnecting all industrial devices and IT systems including equipment,
peripheral devices, sensors/actors, MES, ERP as well as cloud-based IT systems.

SMARTUNIFIER is the tool of choice for transforming data into real value and for providing
seamless IT interconnectivity within production facilities.

2

SMARTUNIFIER User Manual, Release 1.10.0

What does SMARTUNIFIER do

• SMARTUNIFIER provides an easy way to collect data from any Data Source and is able to
transmit this data to any Data Target.

• Data Sources andData Targets (commonly referred to asCommunication Partners) in this
respect may be any piece of equipment, device or IT system, communicating typically
via cable or Wi-Fi and using a specific protocol like e.g., OPC-UA, file-based, database,
message bus.

• With SMARTUNIFIER several Communication Partners can be connected simultaneously.

• With SMARTUNIFIER it is possible to communicate unidirectional or bidirectional to each
Communication Partner. i.e., messages and events can be sent and received at the same
time.

• SMARTUNIFIER can translate and transform data to any format and protocol that is re-
quired by a certain Data Target. This includes different pre-configured protocols and for-
mats, e.g., OPC-UA, file-based, database, message bus, web services andmany direct PLC
connections. In case a certain protocol or format is currently not available it can be easily
added to SMARTUNIFIER.

• By applying so called Information Models, SMARTUNIFIER enables the same view to data
regardless of the protocol or format being used to physically connect an equipment, de-

What does SMARTUNIFIER do 3

SMARTUNIFIER User Manual, Release 1.10.0

vice or IT system.

• A big advantage of SMARTUNIFIER is, that in many cases there is no need for coding
when providing interfaces between different Communication Partners – providing a new
interface is just drag and drop of data objects between data source(s) and destination(s).

Important Use Cases with SMARTUNIFIER

SMARTUNIFIER enables an easy and very efficient realization ofmany use cases that are crucial
for gaining Industry 4.0 Excellence.

In the following subchapters some of the most important SMARTUNIFIER Use Cases are de-
scribed. These give a comprehensive overview of the advanced SMARTUNIFIER Features.

Anything-To-Anywhere IT Interface

Easy, fast and flexible bi-directional interconnection of multiple IT systems and equipment
within a production facility.

Interconnecting heterogeneous shop floor equipment and devices with IT systems and inter-
connecting different IT systems with each other is a central requirement for a successful tran-
sition to modern Industry 4.0 IT landscapes.

SMARTUNIFIER offers the unique capability to easily interconnect equipment and devices by
allowing

• any number of parallel high-speed Communication Channels between equipment, devices
and IT systems

• high-speed translation between different communication protocols and formats by apply-
ing configurable and reusable Information Models and Smart Mappings

• flexible integration of equipment periphery

• easy integration of enterprise-specific information (e.g., equipment -location/-name/-
type/-capabilities) via configurable Enterprise Context

• riskless simulation of interfaces and communication scenarios

Results from renowned reference customers have shown that average equipment integration
efforts and cost can be reduced by up to 90% using the SMARTUNIFIER and its advanced tech-
nologies to perform powerful IT integration by configuration instead of tedious interface pro-
gramming.

Important Use Cases with SMARTUNIFIER 4

SMARTUNIFIER User Manual, Release 1.10.0

Reusable Interfaces and Interface Models

Reuse interface configurations multiple times with minimum effort.

When running an IT network with a higher number of installed SMARTUNIFIER Instances, all
previously created interface configurations (Information Models and Smart Mappings) can be
reused easily and shared across the whole installation. This way similar equipment types are
integrated using the same connection and translation logic.

Changes and updates of interface configurations can be deployed from a centrally accessible
Master Repository, eliminating the need to touch and update each equipment or device individ-
ually

Summarized, SMARTUNIFIER allows a highly comfortable and effective management of very
small to very large IT communication environments, creating minimum overhead and letting
you reach your main goal: Excellent Manufacturing with a full Industry 4.0 IT infrastructure.

Important Use Cases with SMARTUNIFIER 5

SMARTUNIFIER User Manual, Release 1.10.0

Integrate Legacy Equipment

Fast adaptation of legacy communication protocols and formats to modern enterprise stan-
dards.

By applying SMARTUNIFIER configurable protocol translation (Smart Mappings), modern com-
munication standards like OPC-UA or XML over message bus are fully supported.

SMARTUNIFIER allows a smooth migration from existing communication protocols and for-
mats (e.g., between existing equipment and MES) to new Industry 4.0 standards.

This unique capability of SMARTUNIFIER is realized by simply using existing communication
channels simultaneously with newly introduced channels. When finishing themigration, the old
channels can be switched off without any risk.

Important Use Cases with SMARTUNIFIER 6

SMARTUNIFIER User Manual, Release 1.10.0

Implement Fab Communication Scenario

Easily implement complete fab communication sequences that cover multiple steps.

With SMARTUNIFIER it is not only possible to give access to simple equipment or device data
and to provide „some data to MES and Cloud“, but also with SMARTUNIFIER complete commu-
nication scenarios between equipment to upper-level IT systems can be easily implemented.

The communication scenarios can cover all steps from identification, validation, order start as
well as sending results and process data from equipment to MES or Cloud. Of course, it is also
possible to provide any parameter data (recipes) from MES or SCADA to equipment.

Important Use Cases with SMARTUNIFIER 7

SMARTUNIFIER User Manual, Release 1.10.0

Provide Base for Remote Maintenance and Health Monitoring

Establish new services and businessmodels by giving securedmulti-channel access to equip-
ment and device data in real-time.

Production equipment can be integrated with SMARTUNIFIER to provide direct access for
equipment suppliers or maintenance service providers to relevant equipment data (e.g., equip-
ment status, equipment key parameters) via an equipment supplier's cloud infrastructure.

This way, new innovative business models for equipment suppliers are supported by building
the base for "Production as a Service" offerings and remote predictive maintenance.

Also, further advanced business use cases with SMARTUNIFIER are possible, e.i., by imple-
menting real-time equipment monitoring capabilities in a cloud environment.

Another SMARTUNIFIER use case is to give Remote Assistance to equipment suppliers to
achieve production optimization and to ensure themost efficient usage of equipment resources
for customers.

Important Use Cases with SMARTUNIFIER 8

SMARTUNIFIER User Manual, Release 1.10.0

Migrate to Industry 4.0

Migrate step by step to modern communication standards and apply enterprise-wide seman-
tics to data.

A key feature of SMARTUNIFIER is to open an easy way to integrate new IT systems using
modern communication protocols. This is realized by simply adding additional communication
channels to the existing legacy channels.

Another feature of SMARTUNIFIER in this respect is, that all existing IT systemswith their legacy
protocols and formats can still be operated in parallel with the newly established IT systems
(e.g., Data Lake, Advanced Analytics, Cloud).

This way, it is possible to step by step introduce modern communication standards and incre-
mentally migrate to a state-of-the-art Industry 4.0 IT architecture, but still keep the existing IT
infrastructure fully operable.

Important Use Cases with SMARTUNIFIER 9

SMARTUNIFIER User Manual, Release 1.10.0

Allow Unlimited Scalability

Rely on unlimited scalability from single equipment and devices to whole facilities.

SMARTUNIFIER is the first industrial connectivity platform that allows nearly unlimited virtually
scalability in terms of number of connected equipment and devices. The SMARTUNIFIER plat-
form can be applied for integrating one single equipment or device, but with SMARTUNIFIER
hundreds or even thousands of equipment and devices within whole facilities can be integrated
to upper-level systems or into the Cloud.

This is because SMARTUNIFIER is not a traditional middleware having a central limiting mes-
sage bus. Nor does SMARTUNIFIER contain any central performance and latency limiting
database for providing its communication features.

SMARTUNIFIER works as a distributed environment. Using advanced technologies of dis-
tributed computing is the key for enormous scalability.

In a large installation a high number of SMARTUNIFIER Instances, each with low software foot-
print, provide the required communication capabilities. These single instances can be deployed
to any location within an enterprise IT network – on a server, on an equipment PC, within the
Cloud.

Nevertheless, the configuration of all SMARTUNIFIER Instances can be managed centrally:

• central configuration of Information Models and Smart Mappings

• central Operations Monitoring of installed SMARTUNIFIER Instances.

Important Use Cases with SMARTUNIFIER 10

SMARTUNIFIER User Manual, Release 1.10.0

Thus, SMARTUNIFIER is an essential piece of Industry 4.0 for any manufacturing enterprise
– allowing fab-wide and enterprise-wide management of production communication and IT
integration infrastructure.

Enable Internet of Things

Out-of-the-box connections between equipment, devices and other IT systems to Cloud in-
frastructures.

By acting as a translator between equipment and any IOT device precise and secured access
of data consumers is possible. The easy connection to any Cloud based infrastructure is also
possible (e.g., AWS, Azure).

Important Use Cases with SMARTUNIFIER 11

SMARTUNIFIER User Manual, Release 1.10.0

Getting Started

Integration of industrial equipment, periphery and devices with IT systems can become a quite
complex task. SMARTUNIFIER delivers a standard way of implementing such integration sce-
narios. We recommend following the procedures described below.

Getting Started 12

SMARTUNIFIER User Manual, Release 1.10.0

Step Action (Phases) Description

1 Preparation Collect the requirements of systems that are going to be
integrated:

• Find out what protocols are in use.
• Identify the data structures.
• Identify the overall communication scenarios (cre-
ation of sequence diagrams might be useful).

Test and validate the communication of the systems that
are going to be integrated (e.g., testing basic connections
to the systems using tools like MQTT Explorer).
Define a plan on how to conduct the testing before the roll-
out.

2 Deployment of Man-
ager

The number of SMARTUNIFIER Manager installations de-
pends on the scope of the integration. If several plants
are involved, it is recommended to have one installation per
plant.
Note: Reusable configuration components such as Infor-
mation Models can be shared across multiple SMARTUNI-
FIER Manager installations (Backup and Restore).

3 Configuration of
the Communication
Instance

For each Communication Instance:
• Create Information Models based on the data struc-
ture of the system that is going to be integrated.

• Create and configure the Communication Channels
that are needed to connect to the systems.

• Create the Mapping between the Information Models
of the systems based on the previously defined com-
munication scenario.

• Create the Device Type that acts as a template for the
Communication Instance.

• Create and configure the Communication Instance.

4 Deployment of the
Communication
Instance

For each Communication Instance:
• Plan the deployment of the Communication Instance.
• Determine the proper deployment type for the Com-
munication Instance (on-premises, edge, or cloud de-
ployment).

• Deploy the Communication Instance accordingly.

5 Testing Test the communication according to the previously de-
fined test plan.

6 Rollout Rollout and scaling.

Getting Started 13

CHAPTER

TWO

INSTALLATION

Overview

Installing SMARTUNIFIERon a host is the first step in realizing your connectivity scenario. There
are three ways you can install and operate SMARTUNIFIER:

• Install the SMARTUNIFIER installation package on your operating system

– See the system requirements prior to the installation

– Amorph Systems supports using SMARTUNIFIER on the following operating sys-
tems:

* Windows

* Linux

* macOS

• Install SMARTUNIFIER in an containerized environments using Docker

SMARTUNIFIER Setup

Before using SMARTUNIFIER Manager it is recommended to have a look over the following
setup options:

• Product Information and Activation

• Credential Management

• Enabling HTTPS

• Setting up an external version control

• Connecting to a remote database

Planning the Installation

In production it is typically recommended to host SMARTUNIFIER Manager and the Communi-
cation Instances on separate servers.

In a test environment, the Manager and the Communication Instances can run on the same
hardware.

The SMARTUNIFIERManager and the Communication Instances can be run on dedicated hard-
ware as well as in a virtualized environment. CPU and memory requirements are estimated

14

SMARTUNIFIER User Manual, Release 1.10.0

based on modern hardware (e.g. Intel Xeon Coffe Lake / Core i5-7xxx or AMD Epyc / Ryzen 5
3xxx or greater). In a virtualized environment, dedicated resources are highly recommended.

Minimum System Requirements (Manager)

• Computer and Processor: 4 cores

• Memory: 1GB free memory

• Storage (SSD): 10GB free space

• Display PC (Engineering, Dashboard): 1920x1080 (Full HD)

• Mobile Devices (Dashboard): Latest version of Apple iPadOS, Apple iOS, Android

• Operating System: Latest version of Windows, Windows Server, Linux, MacOS (Not rec-
ommended for production) - For an optimal user experience always use the latest version
of the operating system

• Browser: Latest version of Chrome, Microsoft Edge or Firefox

Minimum System Requirements (1 Communication Instance)

• Computer and Processor: 4 cores

• Memory: 256MB free memory

• Storage (SSD): 5GB free space

• Operating System: Latest version of Windows, Windows Server or Linux

Production Deployment Example

Multiple SMARTUNIFIER Instances can be operated on one server. The number of Instances
for each server depends on the overall scenario.

For a deplyoment of ca. 30-40 Communication Instances, the servers minimum requirements
are:

• Computer and Processor: 8 cores

• Memory: 16GB free memory

• Storage (SSD): 150GB free space

• Operating System: Latest version of Windows Server

For high-end use cases that require high data volumes, low latency and high amount of data
pre-processing, it might be that additional computing resources are required (e.g. deploy one
single high-performance Communication Instance on one dedicated computing device).

ò Note

Communication Instances store log files on the host system therefore sufficient storage
needs to be provided.

SMARTUNIFIER Setup 15

SMARTUNIFIER User Manual, Release 1.10.0

Test Environment Deployment Example

In a test environment the Manager and the Communication Instances can run on the same
machine. Hardware configuration for running 20 communication instances as well as the Man-
ager:

• Computer and Processor: 8 cores

• Memory: 16GB free memory

• Storage (SSD): 100GB free space

• Operating System: Latest version of Windows Server

Windows

SMARTUNIFIER be delivered in two formats: as an executable (.exe) or as a ZIP archive.

Install SMARTUNIFIER Manager (Archived Package)

Follow the steps below to install SMARTUNIFIER Manager:

• Move the SMARTUNIFIER installation package to a suitable location. Make sure the path
to the directory does not include any white spaces!

• Extract the .zip-archive.

• Execute the UnifierManager.bat script. Afterwards the SMARTUNIFIERManager Console
appears on the screen.

• Enter your master password. When starting SMARTUNIFIER for the first time go to chap-
ter: Master Password and Administrator Account.

After successfully starting up the SMARTUNIFIER Manager, it can be accessed by opening an
Internet Browser (e.g., Chrome or Firefox) and navigating to http://localhost:9000. Use the ad-
ministrator credentials to login.

ò Note

The console is for information purposes only. It can be moved to any suitable location on
your screen or it can be hidden. Nevertheless, do not close it, because the related processes
will also be terminated.

Install SMARTUNIFIER Manager as a Service

Apache Procrun

SMARTUNIFIER includes Apache Procrun, a Windows tool that facilitates the installation and
execution of Java applications as services. It simplifies the process by integrating the applica-
tion with the Windows Service Control Manager.

Follow the steps below to install and operate SMARTUNIFIER Manager as a Service under Win-
dows:

• Move the SMARTUNIFIER installation package to a suitable location

• Ensure that the directory path does not contain any white spaces

• Extract the .zip-archive

SMARTUNIFIER Setup 16

http://localhost:9000

SMARTUNIFIER User Manual, Release 1.10.0

• Open a terminal window with Administrator privileges within the installation package

• Execute the following commands in the terminal window to:

Listing 1: Install

UnifierManagerService.bat install

Listing 2: Start

UnifierManagerService.bat start

Listing 3: Stop

UnifierManagerService.bat stop

Listing 4: Uninstall

UnifierManagerService.bat uninstall

NSSM

ò Hint

SMARTUNIFIER does not offer official support for NSSM, unlike Apache Procrun. If you
choose to use NSSM, you will need to download the NSSM binary separately.

Follow the steps below to install and operate SMARTUNIFIER Manager as a Service under Win-
dows using NSSM:

• Move the SMARTUNIFIER installation package to a suitable location

• Ensure that the directory path does not contain any white spaces

• Download the latest version of NSSM to a suitable location (Last tested with version 2.24)

• Go to win64 and copy the nssm.exe in the installation package

• Create the UnifierManagerService.bat file in the installation package

Listing 5: UnifierManagerService.bat

@echo off
cd %~dp0
set JAVA_HOME=%~dp0\jre
set JAVA=%JAVA_HOME%\bin\java.exe
set MANAGER=%~dp0\bin\adaptermanagerweb.bat
set JAVA_OPTS=-Dunifier.administrator.credentials.file="%~dp0/conf/
→˓credentials.properties"

del RUNNING_PID
"%MANAGER%"

• Open a terminal window with Administrator privileges within the installation package

SMARTUNIFIER Setup 17

https://nssm.cc/download

SMARTUNIFIER User Manual, Release 1.10.0

• Execute the following commands in the terminal window to:

Listing 6: Install

nssm install SmartUnifierManager "UnifierManagerService.bat"

Listing 7: Start

nssm start SmartUnifierManager

Listing 8: Stop

nssm stop SmartUnifierManager

Listing 9: Uninstall

nssm remove SmartUnifierManager

Optional

Listing 10: Set SERVICE_AUTO_START

nssm set SmartUnifierManager Start SERVICE_AUTO_START

Linux

Follow the steps below to install SMARTUNIFIER Manager:

• Move the installation package to a suitable location. Make sure the path to the directory
does not include any white spaces!

• Extract the .tar.gz-archive.

tar -xvzf SmartUnifierManager-linux-x64.tar.gz

• Start the Manager by opening up a terminal and executing the following commands:

chmod +x UnifierManager.sh

./UnifierManager.sh

ò Note

Execute StartUnifierManagerInBackground.shwhen the process should run in background.
To stop the process execute StopUnifierManager.sh.

./StartUnifierManagerInBackground.sh

./StopUnifierManager.sh

• Enter your master password. When starting SMARTUNIFIER for the first time go to chap-
ter: Master Password and Administrator Account.

SMARTUNIFIER Setup 18

SMARTUNIFIER User Manual, Release 1.10.0

After successfully starting the SMARTUNIFIER Manager, it can be accessed by opening an In-
ternet Browser (e.g., Chrome or Firefox) and navigating to http://localhost:9000.

ò Note

The console is for information purposes only. It can be moved to any suitable location on
your screen or it can be hidden. Nevertheless, do not close it, because the related processes
will also be terminated.

Mac OS

Follow the steps below to install SMARTUNIFIER Manager:

• Move the installation package to a suitable location. Make sure the path to the directory
does not include any white spaces!

• Extract the .tar-archive.

• Start the Manager by opening up a terminal and executing the following commands:

chmod +x UnifierManager.sh

./UnifierManager.sh

ò Note

If you get the warning "java cannot be opened because the developer cannot be verified" -
go to System Preferences... > Security & Privacy and click on Allow Anyway.

• Enter your master password. When starting SMARTUNIFIER for the first time go to chap-
ter: Master Password and Administrator Account.

After successfully starting up the SMARTUNIFIER Manager, the SMARTUNIFIER Manager can
be accessed by opening an Internet Browser (e.g., Safari, Chrome or Firefox) and navigating to
http://localhost:9000.

ò Note

The console is for information purposes only. It can be moved to any suitable location on
your screen or it can be hidden. Nevertheless, do not close it, because the related processes
will also be terminated.

Docker

Requirements

The following example shows how to set up SMARTUNIFIER using Docker Volumes mount to
local paths on the machine.

1. Create the following directories:

conf
Manager configuration files, keystore and database

SMARTUNIFIER Setup 19

http://localhost:9000
http://localhost:9000

SMARTUNIFIER User Manual, Release 1.10.0

mkdir -p /opt/amorph/smartunifier/manager/conf

repository
Storing compiled artifacts

mkdir -p /opt/amorph/smartunifier/manager/repository

versioning (optional)
Storing of component sources, not required when using an external git server like gitea.

mkdir -p /opt/amorph/smartunifier/manager/versioning

logs (optional)
Storing of logs files from the manager

mkdir -p /opt/amorph/smartunifier/manager/log

2. Copy the conf and the repository folder from the SMARTUNIFIER installation package
into the newly created corresponding volumes:

cp -r conf/* /opt/amorph/smartunifier/manager/conf
cp -r repository/* /opt/amorph/smartunifier/manager/repository

ò Note

Edit the application.conf in /opt/amorph/smartunifier/manager/conf and remove the lines
'javaHome = "jre"'

nano /opt/amorph/smartunifier/manager/conf/application.conf

3. Create Docker Volumes mounted to the directories just created:

docker volume create --driver local \
--opt type=bind \
--opt device=/opt/amorph/smartunifier/manager/conf \
--opt o=bind smartunifier_conf

docker volume create --driver local \
--opt type=none \
--opt device=/opt/amorph/smartunifier/manager/repository \
--opt o=bind smartunifier_repository

docker volume create --driver local \
--opt type=none \
--opt device=/opt/amorph/smartunifier/manager/versioning \
--opt o=bind smartunifier_versioning

docker volume create --driver local \
--opt type=none \

(continues on next page)

SMARTUNIFIER Setup 20

https://docs.docker.com/storage/volumes/

SMARTUNIFIER User Manual, Release 1.10.0

(continued from previous page)

--opt device=/opt/amorph/smartunifier/manager/log \
--opt o=bind smartunifier_logs

Start Up

Go to the SMARTUNIFIER package and open the docker directory with the console.

1. Build docker image

docker-compose build

2. Start the manager with attached console

docker-compose run smartunifier

3. Enter Master password and admin user credentials on request

ò Note

Remove the default user set up in the credentials.properties file in order to set the master
password and to create a new admin user.

After the setup is done, a credentials file containing the master password can be used to start
the manager without having to input the password.

docker-compose up -d

Product Information and Activation

Product Information

To open the product information section click on the Account icon (1) and select the About
SMARTUNIFIER section (2).

The About SMARTUNIFIER section provides the following information:

1. Product name

SMARTUNIFIER Setup 21

SMARTUNIFIER User Manual, Release 1.10.0

2. Manager version

3. License information

4. Activation button

5. Company details

6. Privacy Statement URL

To exit the About SMARTUNIFIER section, click on the Close button (7).

Product Activation

The SMARTUNIFIER product requires a license (demo/paid) for activation. The license details
are displayed in the About SMARTUNIFIER section, as seen above.

The product activation can be done in two ways:

• Online

• Offline

Online Activation

Follow the steps bellow to activate the product online:

• Click on the Account icon (1) and select the About SMARTUNIFIER section (2)

• Click on the Activate button (3)

SMARTUNIFIER Setup 22

SMARTUNIFIER User Manual, Release 1.10.0

• Input the key license number (4) and click on the Activate button (5)

• The license key is registered, displaying the following details:

– License Number, visible by clicking on the Show button (6)

– License Type

– Expiration date

– Maximum number of available deployments

• Click on the Update License button (7) to register a new license key or click on the Close
button (8) to exit.

Offline Activation

Follow the steps bellow to activate the product offline:

• Click on the Account icon (1) and select the About SMARTUNIFIER section (2)

SMARTUNIFIER Setup 23

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the Activate button (3)

• Input the key license number (4) and check the box for Offline Activation (5)

• Copy the License Data (6) to an external storage unit

• From a device connected to the internet open the license URL (7)

• Paste the License Data (6) into the Manual activation data field (8) and click on the Acti-
vate button (9)

SMARTUNIFIER Setup 24

SMARTUNIFIER User Manual, Release 1.10.0

• Copy theManual activation response (10) to an external storage unit and paste it into the
Activation data field (11)

• Click on the Activate button (12) to finish. The license is registered, as seen bellow.

Update License

Follow the steps bellow to update the license:

• Click on the Account icon (1) and select the About SMARTUNIFIER section (2)

SMARTUNIFIER Setup 25

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the License Information button (3)

• Click on the Update License button (4)

• Input the key license number (5) and continue with Online Activation (6) or Offline Activa-
tion (7)

SMARTUNIFIER Setup 26

SMARTUNIFIER User Manual, Release 1.10.0

Credentials Management

Master Password and Administrator Account

When starting SMARTUNIFIER for the first time you will be asked to enter a master pass-
word. The master password is needed in order to store credentials securely inside a KeyStore
("unifier.jceks") file located on the user's local machine.

• Enter your master password in the console and re-enter it (1). If the passwords do not
match, simply close the console, execute the UnifierManager.bat and enter the pass-
words again.

ò Warning

If the master password is lost it cannot be recovered!

• Enter the name for the administrator user account and the password (2).

• Open an Internet Browser (e.g., Safari, Chrome or Firefox) and navigating to http://
localhost:9000 and login using the administrator account just created.

You can add more users using the SMARTUNIFIER Manager UI.

SMARTUNIFIER Setup 27

http://localhost:9000
http://localhost:9000

SMARTUNIFIER User Manual, Release 1.10.0

Setting default credentials

You can define default credentials to avoid to re-enter the master password on startup.

1. Go to the SmartUnifierManager folder

2. Open the file UnifierManager.bat for a Windows installation (UnifierManager.sh for a in-
stallation on Linux/macOS)

3. Add the following line:

set JAVA_OPTS=-Dunifier.administrator.credentials.file="%~dp0/conf/
→˓credentials.properties"

4. Make sure that the file credentials.properties exists in the SmartUnifierManager/conf
folder

• Set for unifier.keystore.password the master password as defined in the chapter
Master Password and Administrator Account.

Listing 11: credentials.properties file content

Keystore password
unifier.keystore.password=<keystore_password>

Default Administrator account credentials
unifier.administrator.username=<administrator_username>
unifier.administrator.password=<administrator_password>

Enabling HTTPS

Following configuration is required to enable https :

1. Browse to SmartUnifierManager/conf folder

2. Open application.conf for editing

3. Comment out (using #) following lines

1 play.server.http.port = 9000
2 play.server.http.address = "0.0.0.0"

4. Uncomment following lines and replace path_to_keystore and keystore_password with
valid data

1 play.server.http.port=disabled
2 play.server.https.port=9443
3

4 play.server.https.keyStore.path="path_to_keystore"
5 play.server.https.keyStore.password="keystore_password"

5. Save and close

By default, keystore type is JKS. PEM. PKCS12 format is supported. In order to change the
keystore type you need to add following configuration: play.server.https.keyStore.type=PEM

Generating a keystore is done using the following command:

SMARTUNIFIER Setup 28

SMARTUNIFIER User Manual, Release 1.10.0

1 keytool -keysize 2048 -genkey -alias unifier -keyalg RSA -keystore unifier.
→˓keystore

• keysize 2048 sets the keystore size in bytes. The larger the storage, the more difficult it is
to decipher an SSL key. Setting the keystore size to 2048 bytes is sufficient for high-level
security.

• genkeypair generates a public key and an associated private key.

• alias unifier sets the alias for the SSL key; use this alias to reference keystore later, when
configuring the application.

• keyalg RSA sets the encryption type for storage, which is RSA.

• keystore unifier.keystore, sets the name for the file into which the generated key will be
written

Next, you will "fill in a questionnaire". The data you provide is stored in the SSL key.

Once the keystore is created, you can generate a public SSL key. Recall the keystore password
and run the following command (the terminal asks you to provide the correct password):

1 keytool -certreq -alias unifier -file unifier_csr.txt -keystore unifier.
→˓keystore

• certreq generates a public SSL key (which has also the name Certificate Signing
Request).-alias unifier sets the alias to refer to the key.

• file unifier_csr.txt creates a unifier_csr.txt file to store the key (this is different from the
keystore).

• keystore unifier.keystore sets the key storage file.

You can skip this section if you are going to only test the HTTPS connection. However, if you are
going to use the generated SSL key for production, you need to send it to a Certificate Authority.

Copy the SSL key that you can find in the home/johndoe/csr.txt file. Note that you must copy
the entire contents of the file including the delimiters ----BEGIN NEW CERTIFICATE REQUEST----
and ----END NEW CERTIFICATE REQUEST----. Without the delimiters, your key is not valid.

The SSL provider gives you two certificates in exchange for the key — the root and the interme-
diary certificates. (These certificates are called primary and secondary.) Add them both into
the keystore.

Use the following command to add the intermediary certificate to the keystore:

1 keytool -importcert -alias secondary -keystore unifier.keystore -file <path_
→˓to_secondary_certificate>.<ext>

• importcert tells the keytool library to import the certificates into storage.

• alias secondary sets the alias for the intermediary certificate.

• keystore unifier.keystore sets the necessary keystore for the certificate.

• file <path_to_intermediary_certificate>.<ext> sets the path to the file with the intermedi-
ary certificate.Remember to replace the <path_to_secondary_certificate> with the actual
path; and also use the proper file extension instead of <ext>.

SMARTUNIFIER Setup 29

SMARTUNIFIER User Manual, Release 1.10.0

Similarly, you can add the root certificate to your storage, in this case you need to use a different
command:

1 keytool -importcert -alias unifier -keystore unifier.keystore -trustcacerts -
→˓file <path_to_root_certificate>.<ext>

External Version Control

Gitea

For the setup, make sure you meet the following prerequisites:

• A local installation of Gitea .

• An user account explicitly for SMARTUNIFIER - smartunifier.

• An access token for this user account.

Once all prerequisites are met continue to authenticate SMARTUNIFIER to access Gitea:

1. Go to the application.conf file that is located in the SMARTUNIFIER package
SmartUnifierManager-windows-x64\conf

2. Add the sourceControl JSON object inside the unifiermanager JSON object:

sourceControl {
gitea = {
baseUrl="**Enter Url here**"
accessToken="**Enter access token here**"
}

}

Examples for configuration properties:

Property Example

baseUrl http://localhost/api/v1
accessToken 8748ea571d0395434ee1a0a6f46163ba32d8c95e

Local

Configuration of the local version control:

1. Go to the application.conf file that is located in the SMARTUNIFIER package
SmartUnifierManager-windows-x64\conf

2. Add the sourceControl JSON object inside the unifiermanager JSON object:

sourceControl {
localgit {
repoFolder = "**path to local direcotry**"
}

}

SMARTUNIFIER Setup 30

https://gitea.io/en-us/

SMARTUNIFIER User Manual, Release 1.10.0

External Database

To connect SMARTUNIFIER Manager to a remote database follow the steps below:

1. Go to the application.conf file that is located in the SMARTUNIFIER package
SmartUnifierManager-windows-x64\conf

2. Add the database JSON object inside the unifiermanager JSON object:

database {
main-database {

driver = "net.sourceforge.jtds.jdbc.Driver"
url = "jdbc:jtds:sqlserver://<ip>:<port>;DatabaseName=unifier_db"
username = "<username>"
password = "<password>"

}

cache-database {
driver = "net.sourceforge.jtds.jdbc.Driver"
url = "jdbc:jtds:sqlserver://<ip>:<port>;DatabaseName=cache_db"
username = "<username>"
password = "<password>"

}
}

SMARTUNIFIER Setup 31

CHAPTER

THREE

HOW TO INTEGRATE WITH SMARTUNIFIER

Each integration scenario follows the same workflow, which consists out of 5 steps:

• Information Models - describe and visualize communication related data using hierarchi-
cal tree structures

• Communication Channels - describe and configure the protocols needed for the scenario

• Mappings - define when and how to exchange/transform data between Information Mod-
els

• Device Types - define templates for Instances

• Instances - define applications that provide the connectivity

Below you can see an example of integration scenario and the necessary steps to establish
connectivity with SMARTUNIFIER:

Information Models

What are Information Models

In the SMARTUNIFIER, an Information Model is defined as the data related to communication
that a device or IT system can provide. Each device or IT system is represented by an Informa-
tion Model. An Information Model is composed of elements known as Node Types, and these
models are structured hierarchically like a tree. Thismeans that elements within an Information
Model can include additional elements. This hierarchical structure is essential for accurately
modeling the data structure of devices in a way that reflects their real-world complexity.

Before starting the modeling process for the data structure of, for example, equipment or an IT
system, it's crucial to have a clear understanding of the overall use case. Generally, each piece
of equipment or IT system that needs to be integrated will have its own Information Model.
However, if there are multiple pieces of equipment or IT systems of the same type, a single
Information Model can be used for all of them.

During the later stages of configuring a SMARTUNIFIER instance, the Information Model that
is included in a Mapping, as well as the Mapping itself, can be applied to a Device Types. This

32

SMARTUNIFIER User Manual, Release 1.10.0

allows for the creation of multiple instances from a single device type. Therefore, the Informa-
tion Model serves as a blueprint for the data structure of a device or IT system and needs to be
created only once. Understanding the reusability of the Information Model is crucial.

This concept emphasizes that once an Information Model is established, it can be effectively
reused across different devices or IT systems of similar types, significantly streamlining the
configuration process and enhancing efficiency.

Contextualization

Contextualization describes the process and functionality of connecting and combining corre-
lated data, often across systemboundaries. This context data can be stored and used internally
within SMARTUNIFIER by utilizing Information Models to define the data structures, in combi-
nation with the InMemory Communication Channel. The context data can then be reused and
mapped to other systems wherever the data is needed.

How to create a new Information Model

Follow the steps described below to create an Information Model:

• Select the SMARTUNIFIER Information Model Perspective (1).

• You are presented with the following screen containing a list view of existing Information
Models.

Information Models 33

../../_images/SideMenuInfoModel.png

SMARTUNIFIER User Manual, Release 1.10.0

• In order to add a new Information Model, select the “Add Model“ button at the top right
corner (2).

• On the following screen provide the following mandatory information: Group and Name
(3).

• The “Apply” button at the top right corner is enabled after all mandatory fields are filled in.
Click the button to create a new Information Model (4).

• The newly created Information Model is now visible as a node on the left side of the
screen.

• After the root model node is created, a new Information Model can be built up using defi-
nition types.

• Perform a right click on the root model node and select "Add Node" (5). Select a Definition
Type from the dialog (6).

Node Types

Basics

Based on the specific use case and the communication channels involved, it is important to
select the appropriate Node Type. Node Types are key components of an Information Model
and include various elements such as variables, properties, events, commands, and collections
like arrays and lists.

Each Node Type is associated with a Data Type, which specifies whether it is a predefined data
type (such as String, Integer, Boolean, etc.) or a custom data type.

Example of a Node of Type Variable:

Information Models 34

../../_images/InfoModelListView.png
../../_images/InfoModelEditor.png
../../_images/AddNewInfoModelEditor.png

SMARTUNIFIER User Manual, Release 1.10.0

Naming Restrictions

There are specific restrictions on the naming conventions for Node Types. For instance, Scala
keywords are not permissible. Moreover, a Node Type name cannot begin with a number, and
the underscore character "_" is the sole permitted separator.

If the name of the Node, for example, the name of a Variable, requires a specific naming con-
vention that cannot be used as a Node Type name, it can be customized using the "Field Name"
option within the corresponding Communication Channel. Supported Communication Chan-
nels with the option to set a custom field name include:

• File Reader (CSV, JSON, XML)

• File Tailer (CSV, JSON, XML)

• File Writer (CSV, JSON, XML)

• MQTT (CSV, JSON, XML)

• SFTP File Writer (CSV, JSON, XML)

• WebSocket Client (CSV, JSON, XML)

ò Hint

If you need to use a specific naming convention for a Node Type where restrictions apply
and the Channel does not support custom field names, please contact the SMARTUNIFIER
support team.

List of Scala Keywords Prohibited as Node Type Names in the Information Model:

Information Models 35

../../_images/ExampleNodeTypeWithDataType.png

SMARTUNIFIER User Manual, Release 1.10.0

Scala keywords
abstract else lazy override super true
case extends match package this try
catch false new private throw type
class final null protected trait val
def finally object return true var
do for if sealed type while
else forSome implicit super val with
yield

Available Node Types

Variables

What are Variables

Variables in an Information Model are components that can contain either a specific value or a
structure composed of other variables.

Data Types

• For variables intended to store specific values, use the Simple Data Type.

• To create structures, use the Custom Data Type.

How to create a Variable

• Enter an ID (1)

• Enter a Data Type (2)

• Click the "Apply" button (3)

Properties

What are Properties

Properties are working similar to Variables. Properties can be used for XML attributes when
XML-files are subject to be processed by SMARTUNIFIER, although XML elements are still rep-
resented by Variables in the Information Model.

Information Models 36

SMARTUNIFIER User Manual, Release 1.10.0

Data Types

Property Node Types can be defined using Simple Data Types.

How to create a Property

• Enter an ID (1)

• Enter a Data Type (2)

• Click the "Apply" button (3)

Events

What are Events

SMARTUNIFIER is an event-driven software. In this context an event is an action or occurrence
recognized by SMARTUNIFIER, often originating asynchronously from an external data source
(e.g., equipment, device), that may be handled by the SMARTUNIFIER. Computer events can be
generated or triggered by external IT systems (e.g., received via a Communication Channel), by
the SMARTUNIFIER itself (e.g., timer event) or in other ways (e.g., time triggered event). Typi-
cally, events are handled asynchronously with the program flow. The SMARTUNIFIER software
can also trigger its own set of events into the event loop, e.g., to communicate the completion
of a task. Each event defined in an Information Model has an event type.

An event type consists of one or multiple simple or structured variables. Clients subscribe to
such events to receive notifications of event occurrences.

Data Types

Event Node Types can be defined using Custom Data Type.

How to create an Event

• Enter an ID (1)

• Enter a Data Type for the Event. e.g., "MyFirstEventType" (2)

• Click the "Apply" button (3)

Information Models 37

SMARTUNIFIER User Manual, Release 1.10.0

Within the Event Variables, Arrays or Lists can be added. Follow the steps below to add a Vari-
able:

• Right click the Event node, select "Add Node" and choose a Definition Type (4)

• Enter an ID (5)

• Enter a Data Type (6)

• Click the apply button (7)

• Click the “Save” button at the top right corner (8) to save the Information Model

Commands

What are Commands

Commands are functions, whose scope is bound by an owning InformationModel, like themeth-
ods of a class in object-oriented programming. Commands within an Information Model are
typically invoked by an external IT system (e.g., an equipment) that triggers the command.
In addition, commands of a target Information Model (e.g., an MES) can be triggered by the
SMARTUNIFIER through a Mapping. A command contains one or multiple simple or structured
Variables. Also a command has a return parameter that likewise can be a simple or complex
data type.

The lifetime of the command invocation instance beginswhen the client calls the command and
ends when the result is returned. While commands may affect the state of the owning model,
they have no explicit state of their own. In this sense, they are stateless. Each command defined
in an Information Model has a command type.

Data Types

Command Node Types can be defined using Custom Data Type.

How to create a Command

• Enter an ID (1)

• Click the "Apply" button (2)

Information Models 38

SMARTUNIFIER User Manual, Release 1.10.0

The main two parts of a Command are the Request, referred to as Parameters within the
SMARTUNIFIER, and the Reply. Variables, Arrays and Lists can be added to both of these com-
mand parts.

Follow the steps below to add a Variable to Parameters:

• Select the Parameters node from the tree (3)

• Enter a Data Type (4)

• Click the "Apply" button (5)

• Select the Reply node from the tree (6)

• Enter a Data Type (7)

• Click the "Apply" button (8)

Follow the steps below to add nodes under the Parameter and Reply node:

• Right click the Parameter node, select "Add Node" and choose a Definition Type (9)

• Enter an ID (10)

• Enter a Data Type (11)

• Click the "Apply" button (12)

• Click the "Save" button (13) to save the Information Model

Information Models 39

../../_images/AddNewCommandInformationModel.*
../../_images/AddNewCommandRequestInformationModel.*
../../_images/AddNewCommandReplyInformationModel.*
../../_images/AddNewCommandRequestVariableInformationModel.*

SMARTUNIFIER User Manual, Release 1.10.0

Arrays

What are Arrays

Arrays are designed to store a fixed number of elements, all of which share the same data type.
The array's size needs to be specified in the Information Model's configuration. When defined
as a Custom Data Type, arrays enable the creation of structured elements including Variables,
Arrays, Lists, and Properties.

Data Types

• For Arrays containing values of a specific type, use the Simple Data Type.

• To create structures with other Note Types, use the Custom Data Type.

How to create an Array

• Enter an ID (1)

• Select a Data Type for the Array by clicking the Data Type Drop-Down (2)

• Enter the size of the Array (3)

• Click the "Apply" button (4)

Lists

What are Lists

Lists allow to hold a collection of elements (Variables, Arrays, Lists, Properties).

Data Types

• For Lists containing values of a specific type, use the Simple Data Type.

• To create structures with other Note Types, use the Custom Data Type.

Information Models 40

../../_images/AddNewCommandRequestVariableDetailsInformationModel.*
../../_images/AddNewArrayInformationModel.png

SMARTUNIFIER User Manual, Release 1.10.0

How to create a List

• Enter an ID (1)

• Enter a Data Type for the List. E.g., "String" (2)

• Click the "Apply" button (3)

Data Types

There are two different types of Data Types that can be used in the Information Model:

Predefined Types

These are the standard (primitive) data types that are available in the SMARTUNIFIER. They
include,

Type Definition

Boolean true or false
Byte 8 bit signed value (-27 to 27-1)
Int 32 bit signed value (-231 to 231-1)
String Sequence of characters
Char 16 bit unsigned Unicode character (0 to 216-1)
Double 64 bit IEEE 754 double-precision float
Float 32 bit IEEE 754 single-precision float
Long 64 bit signed value (-263 to 263-1)
Short 16-bit signed integer
LocalDate-
Time

Immutable date-time object that represents a date-time, often viewed as year-
month-day-hour-minute-second.

Offset-
DateTime

Immutable representation of a date-time with timezone information.

Data types like these can be applied to the following Node Types: Variables, Properties, Arrays,
Lists.

Example - Variable with a Predefined Data Type:

• Add a new Variable

• Enter an ID (Name)

• select a predefined data type e.g., "String" (1)

Information Models 41

SMARTUNIFIER User Manual, Release 1.10.0

Custom Types

Custom data types are user-defined data types that can be created and used in the Informa-
tion Model. They can be applied to the following Node Types: Variables, Properties, Arrays,
Lists, Events, Commands. They come in handy, for example, when a complex data structure is
required.

The name of the Data Type is to be defined by the user. It is recommended to name custom
data types in a way that reflects the data structure they represent.

Example - Variable with a Custom Data Type:

• Add a new Variable

• Enter an ID (Name) e.g., "MyFirstComplexVariable"

• Enter a custom name for the Data Type e.g., "MyFirstComplexVariableType" (1)

Now another Variable can be added under the "MyFirstComplexVariable" - Variable:

• Perform a right click on the Custom Variable - "MyFirstComplexVariable"

• Select "Add Node" and choose Variable (2)

ò Hint

Model Node Typeswith custom data types can be easily duplicated throughout the Informa-
tion Model by selecting the same custom data type for a new model node type.

Structures Required by Channels

The structure of an Information Model is influenced by the Communication Channel used in
the integration. Communication Channels can be classified into two types: data-driven and
event-driven communication.

• Event-driven involves integration triggered by an event within a system, such as the re-
ceipt of goods. This event activates a Rule within the Mapping of SMARTUNIFIER.

• Data-driven, on the other hand, is initiated by a change in the data within a system.

Information Models 42

../../_images/AddSimpleVariable.png
../../_images/AddComplexVariable.png

SMARTUNIFIER User Manual, Release 1.10.0

• Additionally, there is command-driven integration, where an event in one system immedi-
ately requires a response from another system. This differs from event-driven integration,
which does not anticipate a direct reply.

Below, a table presents some examples of use cases along with the Information Model struc-
tures they require:

Use Cases Description Communication
Channel

Information Model Structure

Data-driven Retrieving data from
OPC-UA Server

OPC-UA Client Structure of Variables (Prede-
fined and Custom Data Types)
representing the data struc-
ture of the OPC-UA Server

Event-
driven

Posting data on
MQTT Broker

MQTT client Using Events with a structure
of Variables (both Predefined
and Custom Data Types) to
represent the data structure of,
for example, a JSONmessage.

Command-
driven

Executing a Se-
lect request on a
database with pa-
rameters.

SQL Database Using Commands with struc-
tures of variables under Pa-
rameters and Reply

ò Hint

The required structure for the Information Model corresponding to each Communication
Channels is described in the specifc Channel Type documentation.

Importing Data Structures

Data structures can be imported by using extensions, which is especially convenient when deal-
ingwith complex structures that includemany variables. The following import options are avail-
able:

• OpcUa Model Import : Data structures can be imported from an OPC UA server.

• JSON Model Import: JSON structures can be imported directly.

Information Models 43

SMARTUNIFIER User Manual, Release 1.10.0

Shortcuts

Shortcut Action

CTRL + C Copy the selected object
CTRL + V Paste the object from the clipboard
ArrowUp Navigate up
ArrowDown Navigate down
ArrowLeft Navigate up or collapse node
ArrowRight Expand node
ALT + N Open a new contextmenu
CTRL + X Cut the selected object
CTRL + D Duplicate the selected object
CTRL + DELETE Delete the selected object

Communication Channels

What are Channels

Communication Channel or simply Channel refers to a transmissionmedium. A Channel is used
to convey information from one or several senders (or transmitters). Communicating data from
one location to another requires a pathway or medium. These pathways are called Communi-
cation Channels, and the information is transmitted with the help of communication protocols.
Each Information Model can have one Channel or many, and each model can choose which
Channels it subscribes to. The information is transmitted through the Communication Chan-
nels in both directions: from the external system to the SMARTUNIFIER application and vice
versa.

How to create a new Channel

Follow the steps below to create a new Channel:

• Go to the Communication Channels perspective by clicking the "Communication Chan-
nels" button (1)

Communication Channels 44

SMARTUNIFIER User Manual, Release 1.10.0

• To create a new Channel, select the "Add Channel" button at the top right corner (2)

• The creation of a Communication Channel is split up into two parts. First enter basic
information about the new Communication Channel

– Fill in the information for the Channel identifier such as: Group, Name and Version.
Description is optional (3)

– Besides that, associate the Channel with an Information Model (4)

– Select the type this Channel represents from the Drop-Down (5) - A list of available
Channel Types and a description of how to configure each of them can be found
below

• Click the "Save" button (6) to save the Channel

Communication Channels 45

SMARTUNIFIER User Manual, Release 1.10.0

Channel Types and Configuration

There are several Channel types available with SMARTUNIFIER. A listing of Communication
Channel types can be found at https://amorph.pro/getsmartertopic/smart-connectivity/. If a
specific Communicating Channel type is not available in this product version, please contact
Amorph Systems. In many cases the provision of a specific Communication Channel type can
be provided as extension to the standard product.

The configuration of the Communication Channels can be done on Channel, Device Type and
Instance level.

ò Note

It's important to note that the configuration of a Channel can be overwritten as needed. For
example, the configurationmade in the Communication Channel view can be changed in the
Instance view.

The following paragraphs lay out the configuration process of selected Channel Types. If the
Channel Type you want to use is not described, please contact Amorph Systems for configura-
tion guidance.

File-based

File Reader

Characteristics

• File Reader monitors a specified folder - the so-called input folder

• If a file is inserted the following actions take place:

– The Trigger of the specified Rule in the Mapping is activated

– Thus, the Rule is executed

• After successful execution of the rule the file is moved into a so-called output folder

• In case of an exception the file is moved into an error folder

• The File Reader can be used for different file formats like CSV, JSON and XML

Communication Channels 46

https://amorph.pro/getsmartertopic/smart-connectivity/

SMARTUNIFIER User Manual, Release 1.10.0

Information Model Requirements

The first Node after the root node must be of type Event . Depending on the file format,
the Information Model needs to be built up accordingly:

CSV

• Reading multiple lines from a CSV file requires a List .

• Data in the CSV columns is represented by the Node Type Variable . Note that the order
of fields in the CSV file must match the order of Variables in the Information Model.

Below is an example of a CSV file containing multiple records and the corresponding Informa-
tion Model:

JSON

• Reading a JSON file containing a list structure requires a List .

• Keys are represented by the Node Type Variable .

Below is an example of a JSON file containinga list and the corresponding Information Model:

Communication Channels 47

SMARTUNIFIER User Manual, Release 1.10.0

XML

• Elements of the XML file are represented by the Node Type Variable .

• Attributes of the XML file are represented by the Node Type Property . In order to

assign attributes to elements in the Information Model, the element Node Type must
be a Custom Data Type.

Below is an example of a XML file containing multiple records and the corresponding Informa-
tion Model:

Configuration

In this example, the setup of the File Reader for CSV is illustrated.

1. Select the File Reader with the file format to be used from the Drop-Down.

2. Click the Configure button.

3. Ensure the root model node is selected to configure the File Consumer to String as well
as the CSV String to Model.

4. File Consumer to String - Configuration

• Enter a path for the input folder - In Folder

• Enter a path for the process folder - Process Folder

• Enter a path for the output folder - Out Folder

• Enter a path for the error folder - Error Folder

Communication Channels 48

SMARTUNIFIER User Manual, Release 1.10.0

• Specify the Polling interval and select the Unit

• (Optional) Select the checkbox File lifetime to delete files after the set time in the
output and error directories.

• (Optional) Enter the number of files to keep in the output and error directories.

• Select the CharSet according to the file in use

• (Optional) Select the File Filter checkbox to limit the file size; files larger than the
threshold are moved to the unprocessed directory.

ò Note

If Files to Keep is usedwith File Lifetime, this value takes precedence in the cleanup process,
meaning older files are not deleted until the threshold is reached.

5. CSV String to Model - Configuration

• Enter the Separator which is used in the CSV-file

• If needed, set String delimiter, EOL delimiter and the Timestamp format

• If the CSV file contains a header enable Ignore first line

• Specify the Polling interval and select the Unit

Communication Channels 49

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

To configure XML to Model or JSON to Model navigate to the respective sections.

6. Specify the Event used by selecting the event node in the tree on the left side

7. File Consumer to String - Configuration

• Enable the Event checkbox for the File Name Filter

• Enter a Regular expression in order to determine which file is to be processed in the
input folder

8. CSV String to Model - Configuration

• Enable the Event checkbox for the Csv Model Configuration

• Start of processing

– If the entire content of the file is processed on this event enter a wildcard in the
RegEx field

– If the processing starts at a specific line enter a regular expression in the RegEx
field to identify the line

9. Click the Apply button, then the Close button and save the Channel by clicking the Save
button

Description of configuration properties:

Communication Channels 50

SMARTUNIFIER User Manual, Release 1.10.0

Property Description Example

Separator Separator type, used in the csv file , , ;
Delimiter Values that have an additional delimiter like

"Date", "Time"
"

Eol Delimiter Defining Carriage return and/or Line Feed \r, \n
Timestamp for-
mat

Format of the timestamp YYYY-MM-DD HH:mm:ss

ignoreFirstLine Delay between checks of the file for new con-
tent in milliseconds

true, false

TailFromEnd Set to true to tail from the end of the file, false
to tail from the beginning of the file

true, false

InFolder Path leading to the Input Folder C:\FileConsumer\In
OutFolder Path of a node in the Information Model C:\FileConsumer\Out
ErrorFolder Regular Expression for the message filter

used in the implementation
C:\FileConsumer\Error

CharSet Encoding of the file in use UTF-8, UTF-8 BOM, etc
ProcessFolder Regular Expression for the message filter

used in the implementation
C:\FileConsumer\
Process

File Tailer

Characteristics

• The File Tailer monitors a given file in a specified location.

• Data is processed line by line.

• Note that the File Tailer does not support the node type List in the Information Model.

• The File Tailer can be used for CSV Files.

Information Model Requirements

The first Node after the root node must be of type Event .

CSV

• Data in the CSV columns is represented by the Node Type Variable . Note that the order
of fields in the CSV file must match the order of Variables in the Information Model.

Communication Channels 51

SMARTUNIFIER User Manual, Release 1.10.0

Configuration

In this example, the setup of the File Tailer for CSV is illustrated.

1. Select File tailer (CSV) from the Drop-Down.

2. Click the Configure button.

3. Make sure the root model node is selected to be able to configure the File Tailer to String
and CSV String to Model.

4. File Tailer to String - Configuration:

• Enter the File path for the CSV-file on your machine

• Specify the Polling interval and select the Unit

• Enable Tail from end if you want to pick up always the last line of the file

• Enable Reopen between chunks if the file should be closed and reopened between
chunks

• Select the Charset according to the file in use

5. CSV String to Model - Configuration:

• Enter the Separator which is used in the CSV-file as well as the String delimiter

• Input the Eol delimiter and the Timestamp format if one is used.

• If the CSV file contains a header enable Ignore first line

• Input the Polling interval and select the Unit

Communication Channels 52

SMARTUNIFIER User Manual, Release 1.10.0

6. Select the event node in the tree on the left side.

7. Check the Routes checkbox.

8. Enter a Regular expression for the message filter.

9. Click the Apply button, then the Close button and save the Channel by clicking the Save
button on the upper right corner.

Description of configuration properties:

Property Description Example

Separator Separator type, used in the csv file , , ;
Delimiter Values that have an additional delimiter like "Date",

"Time"
"

Eol Delimiter Defining Carriage return and/or Line Feed \r, \n
Timestamp for-
mat

Format of the timestamp YYYY-MM-DD
HH:mm:ss

File Path to the csv file C:\test.csv
Delay Millis Delay between checks of the file for new content in mil-

liseconds
250

TailFromEnd Set to true to tail from the end of the file, false to tail
from the beginning of the file

true, false

ReopenBe-
tweenChunks

If true, close and reopen the file between reading chunks true, false

routes Path of a node in the Information Model true, false
messageFilter-
RegEx

Regular Expression for the message filter used in the
implementation

.*

Communication Channels 53

SMARTUNIFIER User Manual, Release 1.10.0

File Writer

Characteristics

• The File Writer writes data to a file in CSV, JSON, or XML format.

• The data can be written to the file in either append mode or overwrite mode.

• The File Writer can be used for different file formats like CSV, JSON and XML

Information Model Requirements

The first Node after the root node must be of type Event .

CSV

• CSV columns are represented by the Node Type Variable . Note that the order of the
Variables in the Information Model determines the order of the columns in the produced
CSV file.

Here is an example of the Information Model and how the data is written to the CSV file:

JSON

• The key-value pairs are represented by the Node Type Variable .

• Objects require Variables of Custom Data Type.

• Writing list structures to a JSON file requires a List .

Here is an example of the Information Model and how the data is written to the JSON file:

Communication Channels 54

SMARTUNIFIER User Manual, Release 1.10.0

XML

• Attributes of the XML file are represented by the Node Type Property .

• In order to assign attributes to elements in the InformationModel, the element Node Type

must be a Custom Data Type.

• Writing list structures to a XML file requires a List in the Information Model.

Here is an example of the Information Model and how the data is written to the XML file:

Configuration

1. Ensure the root model node is selected in the Information Model.

2. Enter a path for the location where the file should be written.

ò Note

If a path is entered without any slashes, it is interpreted as the name of a directory to be
created within the deployed Instance.

Communication Channels 55

SMARTUNIFIER User Manual, Release 1.10.0

3. Select the Event node in the Information Model.

4. Enable the checkbox Event context

5. (Optional) Enable Append to append data to the file. If this option is disabled, the existing
file will be overwritten.

6. Enter a Formatter for the file name. Placeholders can be used to dynamically name the
file. A placeholder can be a value from the variable itself, such as ${Timestamp}, or it can
be a direct timestamp format, such as T{yyyy-MM-dd_HH-mm}.

ò Note

If the file name changes, a new file will be created. For example, if the minute changes and
a timestamp is part of the formatter, a new file will be generated.

Databases

SQL Database

Characteristics - SQL Database

• The SQL Channel can be configured for the following two scenarios:

– Inserting data

– Updating data

– Retrieving data

• When inserting values into the database please note that "infinity" values are converted
automatically into "null" values.

Information Model Requirements

Insert/Update

• The node after the root model nodemust be of type Event which represent a database
table.

• In case of relational databases: Tables which are dependent on each other require a List

.

Communication Channels 56

SMARTUNIFIER User Manual, Release 1.10.0

• Columns of databases are represented by Variables .

Select

• The Command defines that after a request is made, a reply with a result is expected.

• Parameters within a Command represent a collection of query parameter - query pa-

rameters are defined as Variables .

• Reply within a Command represents the result of the Command - results are defined

as Variables .

How to configure the SQL-Database

1. Select the root model node in the tree on the left.

2. Configure the database connection

• Select the Database type

• Enter the database connection URL for the specific database type

– DB2: jdbc:db2:server:port/database

– HSQLDB: jdbc:hsqldb:file:databaseFileName;properties

– ORACLE: jdbc:oracle:thin:prodHost:port:sid

– PostgreSQL: jdbc:postgresql://host:port/database

– SQLServer: jdbc:sqlserver://[serverName[\
instanceName][:portNumber]][;property=value[;property=value]]

– MariaDB: jdbc:(mysql|mariadb):[replication:|loadbalance:|sequential:|aurora:]/
/<host>[:<portnumber>]/[database][?<key1>=<value1>[&<key2>=<value2>]]

• Enter the database Username and Password or select it from the Credentials Man-
ager

• Set the Maximum pool size

• Specify the Alive check interval

• Specify a Reconnection interval

Communication Channels 57

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/java/src/tpc/imjcc_r0052342.html
http://www.hsqldb.org/doc/2.0/guide/dbproperties-chapt.html#dpc_connection_url
https://docs.oracle.com/cd/B28359_01/java.111/b31224/jdbcthin.htm
https://jdbc.postgresql.org/documentation/80/connect.html
https://docs.microsoft.com/de-de/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver15
https://mariadb.com/kb/en/about-mariadb-connector-j/

SMARTUNIFIER User Manual, Release 1.10.0

Description of configuration properties:

Communication Channels 58

SMARTUNIFIER User Manual, Release 1.10.0

Table 1: Database Properties

Property Description Example

Type Type of the database MariaDB, SQLServer, ORACLE,
HSQLDB, DB2, PostgreSQL

ReconnectInterval Time to reconnect if connec-
tion to the database fails

10 (in milliseconds)

JdbcUrl Url to connect to database
• jdbc:sqlserver:
//localhost:1433;
databaseName=
unifier;
trustServerCertificate=
true

• jdbc:mariadb:
//localhost:
3306/unifier?
connectTimeout=5000

• jdbc:db2://127.0.0.1:
50000/TESTDB

• jdbc:hsqldb:file:
\protect\T1\
textdollardbFileName;
shutdown=true

• jdbc:postgresql://127.
0.0.1:5432/postgres

• jdbc:oracle:thin:
@localhost:
1521/MYCDB - See
the Oracle info

Username and password Credentials of the database
Alive check interval Duration between checks to

determine if a database con-
nection is still alive

e.g.: 15 (seconds)

Maximum pool size Specifies the number of con-
nections that can be main-
tained in the pool (ensuring
that the database can han-
dle a specified number of si-
multaneous database inter-
actions)

e.g.: 10

ò Note

The configuration of specific information model nodes differs whether you want to perform
an insert or an select statement on the database. Inserting data into the database requires
an event node whereas selecting data requires a command node in the Information Model.

Communication Channels 59

jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:sqlserver://localhost:1433;databaseName=unifier;trustServerCertificate=true
jdbc:mariadb://localhost:3306/unifier?connectTimeout=5000
jdbc:mariadb://localhost:3306/unifier?connectTimeout=5000
jdbc:mariadb://localhost:3306/unifier?connectTimeout=5000
jdbc:mariadb://localhost:3306/unifier?connectTimeout=5000
jdbc:db2://127.0.0.1:50000/TESTDB
jdbc:db2://127.0.0.1:50000/TESTDB
jdbc:hsqldb:file:\protect \T1\textdollar dbFileName;shutdown=true
jdbc:hsqldb:file:\protect \T1\textdollar dbFileName;shutdown=true
jdbc:hsqldb:file:\protect \T1\textdollar dbFileName;shutdown=true
jdbc:hsqldb:file:\protect \T1\textdollar dbFileName;shutdown=true
jdbc:postgresql://127.0.0.1:5432/postgres
jdbc:postgresql://127.0.0.1:5432/postgres
jdbc:oracle:thin:@localhost:1521/MYCDB
jdbc:oracle:thin:@localhost:1521/MYCDB
jdbc:oracle:thin:@localhost:1521/MYCDB

SMARTUNIFIER User Manual, Release 1.10.0

ò ORACLE

The JDBC Driver by default is not included in the SMARTUNIFIER package. To use the
database type Oracle please follow these steps:

1. Review and accept the Oracle License Agreement

2. Navigate to ..SmartUnifierManager/repository/amorphsyslib/com.oracle.database.jdbc/ojdbc11/jars

3. Download the Oracle JDBC Driver and add it to the specified directory

Select Statement

1. Select the command node in the tree on the left.

2. Check the Custom Query checkbox

• Enter the SQL Query

• (Optional) Check the Set empty variables to NULL if emtpy variables should be set
to NULL in the SQL statement

• (Optional) Check the Log query checkbox to explicitly allow logging of the defined
SQL statement to the database.

• (Optional) Check the Log result checkbox to explicitly allow logging the entries (re-
sult) the query returned.

ò Note

Both the logging options (Log query and Log result) are recommended settings during the
configuration and testing of the communication instance. In production mode, this should
be disabled.

3. Each variable under Parameters and Reply needs to be assigned to a corresponding
database column. To configure this, select the variable node under Parameters and then
choose the appropriate option in the tree structure.

4. Check the Assign database column checkbox

• Enter the Column name as it is defined in the used database

• (Optional) Check Not used to exclude the variable from the database operation

Communication Channels 60

https://www.oracle.com/downloads/licenses/oracle-free-license.html
https://mvnrepository.com/artifact/com.oracle.database.jdbc/ojdbc11

SMARTUNIFIER User Manual, Release 1.10.0

Insert Statement

1. Select the event node in the tree on the left.

2. Check the Insert checkbox

• Enter the Table name

• (Optional) If required enter a Schema name

• (Optional) Enter the Primary key column name

• (Optional) Check Log query to explicitly allow logging of the defined SQL statement
to the database. This is recommended during the configuration and testing of the
communication instance. In production mode, this should be disabled.

3. Select the variable node in the tree on the left

4. Check the Assign database column checkbox

• Enter the Column name

• (Optional) Check the Insert auto generated key from parent checkbox if the column
relates to its parent

• (Optional) CheckNot used to exclude the variable from the database insert operation

ò Note

Configuration of the column name is only necessary if the column name in the database is
different compared to the variable defined in the Information Model.

Communication Channels 61

SMARTUNIFIER User Manual, Release 1.10.0

InfluxDB v1

InfluxDB v1 is the initial version of the high-performance time-series database designed for
time-stamped data storage and real-time analytics, for more information visit the influxdata
website.

Information Model Requirements

Writing

• Measurements are represented by Event and Complex Variables

• Fields are represented by Variables by default

• Tags and Time are as well represented by Variables but they have to be specifically
configured (see below Tags configuration and Time configuration)

• Arrays can be used to set use an index

Communication Channels 62

https://www.influxdata.com/
https://www.influxdata.com/
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#measurement
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#field
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#tag
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#timestamp

SMARTUNIFIER User Manual, Release 1.10.0

Reading

• Reading from InfluxDB is done using Command , Complex Variables and Lists

• Result variables are optional, so the number of variables can be fewer than those returned
by the query

• For the time the types string, long and OffsetDateTime are supported

• Variables in the requests can be used as parameters for building the query using the
${MyVariableName} pattern

• For ungrouped result the following command reply structure needs to be used

• For grouped result the following command reply structure needs to be used

Configuration

1. Select the root model node in the tree on the left.

2. Configure the InfluxDB.

• Enter the URL to the database

• Enter the Database name

• Enter the database Username and Password or select it from the Credentials Man-
ager

• Enter the Batch size - writes data in batches to minimize network overhead when
writing data to InfluxDB

• Enter the Flush interval and select the Unit (Please note that too short interval might
cause data loss!)

Communication Channels 63

SMARTUNIFIER User Manual, Release 1.10.0

Description of configuration properties

Property Description Example

URL Database URL and port http://127.0.
0.1:8086

DB
Name

Database name InfluxDB

Creden-
tials

Database credentials None

Batch
size

Data written in batches 1000

Flush in-
terval

Delay between data flushes in milliseconds, at most batch
size records are sent during flush

1000

Mea-
sure-
ment

Name of the measurement stored in influxdb WeatherData

Tag
names

Optional tag to be added to the measurement Type=Station

Writing / Event Configuration

3. Select the event node

4. Enable the checkbox to configure the event

• Enter the Measurement - if it differs from the event name

• Enter Tags - comma separated

Communication Channels 64

SMARTUNIFIER User Manual, Release 1.10.0

Tags

Tags aremetadata for the data. They'remade up of key-value pairs, and they describe attributes
of the data that don’t change every time the data point is recorded. To configure a variable as
a tag follow the steps below:

5. Select the variable which should be a Tag

6. Enable Extended configuration

• Select Tag from the drop-down menu

• Enter a Name - if it differs from the variable name

Fields

Fields represent the actual data stored and consist of key-value pairs. Unlike tags, fields aren't
indexed. Variables not explicitly configured are automatically recognized as fields by the In-
fluxDB Channel.

If the field name should differ from the variable name in the InformationModel, follow the steps
below:

7. Select the variable which should be a field

8. Enable Extended configuration

• Select Field from the drop-down menu

• Enter a Name - if it differs from the variable name

Time

Timestamps indicates when a data point occurred and, in combination with its tag set, uniquely
identifies that data point in a series. The time can be provided as:

• Long value (unix timestamp)

Communication Channels 65

SMARTUNIFIER User Manual, Release 1.10.0

• String (format needs to be provided in the configuration)

• OffsetDateTime

To configure a variable as a time follow the steps below:

9. Select the variable which should be a time

10. Enable Extended configuration

• Select Time from the drop-down menu

• Select the Precision (Only for variables of type Int or Long)

• Enter a Formatter (This is required if time is provided as a String)

Arrays

11. Select the Array

12. To configure the Array select Extended Configuration

• (Optional) Enter an Index name

• (Optional) Enter a Field name if the event node name differs from the actual name
in InfluxDB.

• (Optional) Enter Tags separated by commas e.g., (location=NewYork, street=xxx)

Reading / Command Configuration

20. Select the command node

21. Enable the checkbox to configure the command

22. Enter the query.

For using variables in the query the ${MyVariableName} pattern can be used

Communication Channels 66

SMARTUNIFIER User Manual, Release 1.10.0

InfluxDB v2

Characteristics - InfluxDB v2

In case of a time series data use case where you need to ingest data in a fast and efficient way
you can use InfluxDB.

Information Model Requirements

Inserts using Events

• The node after the root model in this case is of the type Event which represent a
database table.

• Fields are represented by Variables .

Inserts using Custom Data Types

• Complex Variables (ModuleA) represents Measurements

• Variables underneath within the complex variable (Temperature) represents Fields

• Arrays can be used to set use an index

Communication Channels 67

https://www.influxdata.com/
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#field
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#measurement
https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/#field

SMARTUNIFIER User Manual, Release 1.10.0

How to configure InfluxDB v2

1. Select the root model node in the tree on the left.

2. Configure the InfluxDB.

• Enter the URL to the database

• Enter the Organization defined in the database

• Enter the Bucket defined in the database

• Enter the Token or select it from the Credential Manager

• Enter the Batch size - writes data in batches to minimize network overhead when
writing data to InfluxDB

• Enter the Flush interval and select the Unit (Please note that too short intervalls
might cause data loss!)

Event Configuration

1. Select the event node

2. Enable the checkbox to configure the event

• Enter the Measurement - if it differs from the event name

• Enter Tags - comma separated

Communication Channels 68

SMARTUNIFIER User Manual, Release 1.10.0

Configuration of Tags

5. Select the variable which should be a Tag

6. Enable Extended configuration

• Enter a Name - if it differs from the variable name

• Enable the checkbox IsTag

Configuration of fields

7. Select the variable which should be a field

8. Enable Extended configuration

• Enter a Name - if it differs from the variable name

• Leave the checkbox IsTag disabled

Array Configuration

Communication Channels 69

SMARTUNIFIER User Manual, Release 1.10.0

9. Select the Array

10. To configure the Array select Extended Configuration

• (Optional) Enter an Index name

• (Optional) Enter a Field name if the event node name differs from the actual name in
InfluxDB.

• (Optional) Enter Tags separated by commas e.g., (location=NewYork, street=xxx)

Description of configuration properties:

Property Description Example

URL Database URL and port http://127.0.
0.1:8086

Organi-
zation

Name of the Organization CompanyName

Bucket Name of the Bucket Database_1
Creden-
tials

Token-based authentication Token

Batch
size

Data written in batches 1000

Flush in-
terval

Delay between data flushes in milliseconds, at most batch
size records are sent during flush

1000

Mea-
sure-
ment

Name of the measurement stored in influxdb WeatherData

Tag
names

Optional tag to be added to the measurement Type=Station

InMemory

Characteristics - InMemory

The InMemory Communication Channel can be used to cache data for reuse in the Mapping.

Data can be stored persistently by writing the data structure of the Model and the values of the
Variables to a file in JSON format. If no values are mapped to the Variables of the InMemory

Communication Channels 70

SMARTUNIFIER User Manual, Release 1.10.0

Information Models, the values are set to null an initial value.

Fig. 1: Example JSON file

Information Model Requirements

The following Node Types can be used to model data structures:

• Variables with a Simple Data Type.

• Variables with a Custom Data Type.

Fig. 2: Example Information Model

How to configure InMemory

1. Select the root model node

2. (Optional) Enable persistence if the data should be stored persistent

• Adjust if necessary the Flush interval — it determines how often data should be per-
sisted (flushed) to a file

• Enter a File name - by default the identifier (Id) of the Communication Channel is set
as file name

Communication Channels 71

../../../_images/ExamplePersistenceFile.png
../../../_images/ExampleModel.png

SMARTUNIFIER User Manual, Release 1.10.0

3. Select a Variable if an initial value should be set

4. Enable Set initial value and enter some data

Protocols

MQTT

Characteristics - MQTT

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). To learn more
about the standard visit the MQTT website.

Information Model Requirements

• The first node after the root node, , must be of type Event or Variables with a
Simple Data Type.

• The following Node Types can be used under the Event Node:

– Variables with a Simple Data Type represents the key-value pairs.

– Variables with a Custom Data Type represent objects that can contain key-value
pairs.

– With Lists you can aggregate multiple variables.

Communication Channels 72

../../../_images/InMemoryRootNodeConfig.png
../../../_images/InMemoryVariableConfig.png
https://mqtt.org/

SMARTUNIFIER User Manual, Release 1.10.0

ò Hint

When publishing a topic, the Information Model dictates the payload's structure.

ò Hint

When subscribing to a topic, ensure that the Information Model structure aligns with the
payload.

Configuration - MQTT Channel

1. Select the MQTT (JSON) as Channel Type.

2. Click the Configure button.

3. Select the root model node

4. Configure the MQTT To String configuration:

• Enter Host and Port of the MQTT Broker used

• If required, adjust the default values for Reconnect interval, Connection timeout,
Keep alive interval and the Unit for each

• Specify a path to a folder on your localmachine. The temp directory inside the SMAR-
TUNIFIER Manager can be used as well.

• (Optional) Specify a Client ID

• Set the Quality of Service (QoS)

• (Optional) Enable Retained if required

• Select Username and password in order to manually enter the credentials or select
Username and password credentials reference to add it from the Credentials Man-
ager. If there are no credentials needed (e.g., test.mosquitto.org) select None.

Communication Channels 73

SMARTUNIFIER User Manual, Release 1.10.0

5. Select the event node in the tree on the left.

6. Enable either Producer or Consumer depending on the use case and enter a Topic name.

7. Click the Apply button.

ò Note

The Producer and Consumer options can be enabled for a Variable node, allowing it to pro-
duce or subscribe to/from a single variable

Following are some examples of different data types:

Communication Channels 74

SMARTUNIFIER User Manual, Release 1.10.0

CSV

• CSV columns are represented by the Node Type Variables . Note that the order of
the Variables in the Information Model determines the order of the columns in the MQTT
output.

Here is an example of the Information Model and how an CSV input is displayed in MQTT:

JSON

Here are some examples, of how a JSON could be output in MQTT:

When dealing with complex variables, it is possible to produce to multiple subtopics by config-
uring them individually.

For example:

• The complex variable "Mqtt" has the default topic "Mqtt", this can be changed if needed.

• The nodes within that topic are structured as "Mqtt/nodename", when outputted in mqtt.

Variable Configuration

This configuration can be used when certain keywords or reserved words from the data set are
not allowed in the Information Model. For example, for the Scala keywords like 'type', you might
name it 'Type' in the Information Model. Subsequently, in the Channel configuration, you can
assign its actual name using the Field name input.

To configure the field name follow the steps described below:

Communication Channels 75

SMARTUNIFIER User Manual, Release 1.10.0

1. Select the event in the tree on the left.

2. Check the box for the Events configuration.

3. Select the variable in the tree on the left.

4. Check the box for the Variable configuration.

5. Input the Field name, representing the reserved word.

6. Click on the Apply button.

Certificates

Encrypted connection using TLS security is supported. Follow the steps below to encrypt the
connection.

1. Enable Hostname Verification (optional)

2. Enable the Tls Configuration checkbox

• Enter the path to the CA (certificate authority) certificate of the CA that has signed the
server certificate

ò Note

Make sure the CA certificate is valid.

3. Enable the Client checkbox

• Enter the path to the Client certificate. The client certificate identifies the client just like
the server certificate identifies the server.

• Enter the path to the Private client key.

• If applicable select to enter a Password or to add from the Credentials Manager.

• Select the Protocol from the Drop-Down.

Communication Channels 76

SMARTUNIFIER User Manual, Release 1.10.0

Disconnected Buffer

In case the connection is lost, messages can be buffered offline when the Disconnected Buffer
is enabled. Follow the steps below to enable the DisconnectedBuffer.

1. Enable the Disconnected Buffer checkbox.

2. Set the Buffer size - defines the number of messages being hold e.g., 5000.

3. (Optional) Enable Persist Buffer.

4. (Optional) Enable Delete Oldest Message.

Description of configuration properties:

Property Description Example

host URL of the MQTT Broker. test.
mosquitto.
org

port Port of the MQTT Broker. 1883
reconnectIn-
terval

Time interval to reconnect to the MQTT Broker after loss
of connection in seconds

5

connection-
Timeout

Time interval the connection times out in seconds 60

keepAliveInter-
val

Time the session persists in seconds 60

persistence-
Folder

Path to a folder for the persistence store of the MQTT temp

clientId Identifies an MQTT client which connects to an MQTT
Broker

MyClientID

username Client username Username
password Client password Password
hostnameVeri-
fication

Hostname Verification true, false

tls Encryption true, false
producers Data producer true, false
consumer Data consumer true, false
protocol TLS protocol version TLSv1.1,

TLSv1.2
disconnected-
Buffer

Offline buffering of data true, false

bufferSize Amount of message allowed in the buffer 5000
persistBuffer Buffer persistence true, false
deleteOld-
estMessage

Delete oldest message in buffer true, false

Communication Channels 77

SMARTUNIFIER User Manual, Release 1.10.0

Modbus

Characteristics - Modbus

MODBUS is an application-layer messaging protocol, positioned at level 7 of the OSI model. It
provides client/server communication between devices connected on different types of buses
or networks. To learn more about the standard visit the MODBUS website.

Information Model Requirements

• The following Node Types can be used to model a register:

– Variables with a Simple Data Type.

– Variables with a Custom Data Type.

Configuration - Modbus

1. Select Modbus/Tcp Client as Channel Type.

2. Click the Configure button.

3. Make sure the root model node is selected to configure the Modbus/TCP Client

4. Enter the IP address and the port

5. (Optional) Change the Connect interval if needed

6. (Optional) Change the Reconnect interval if needed

7. (Optional) Change the Receive interval if needed

Communication Channels 78

https://www.modbus.org/specs.php

SMARTUNIFIER User Manual, Release 1.10.0

8. Select the complex variable node

9. Enable the checkbox TCP Client connection configuration

10. (Optional) Enable Autorefresh to specify the retrieval rate

11. Select the Function Code

12. (Optional) Change the Max update interval if needed

13. Select the complex variable node

14. Enable the checkbox Variables configuration

15. Select the Data type

16. (Optional) Enter the register address

ò Note

If address is left empty, SMARTUNIFIER assumes that the Information Model structure is in
line with the register addresses.

Communication Channels 79

SMARTUNIFIER User Manual, Release 1.10.0

Description of data type format:

Data Type Size Range

BYTE, USINT, UInt8 8 Bit 0 - 255
WORD, UINT, UInt16 16 Bit 0 - 65.535
DWORD,UDINT,
UInt32

32 Bit 0 - 4.294.967.295

LWORD,ULINT, UInt64 64 Bit 0 - 2^64-1
SINT, Int8 8 Bit –128 - 127
INT, Int16 16 Bit –32.768 - 32.767
DINT, Int32 32 Bit –2.147.483.648 - 2.147.483.647
LINT, Int64 64 Bit –2^63 - 2^63-1
REAL, Float32 32 Bit -3,402823e+38 - 3,402823e+38
LREAL, Float64 64 Bit -1,7976931348623158e+308 - 1,

7976931348623158e+308

Description of configuration properties:

Property Description Exam-
ple

IP Client IP localhost
Port Client port 502
Connection timeout Time interval the connection times out 60
Reconnect interval Time interval to reconnect to the client after loss of con-

nection
5

Receive interval TCP/IP receive timeout 50
Autorefresh Automatic polling of Modbus server 2
Read function code Function code used for reading variables from a modbus

server
FC04

Max update interval Minimum time between requests to the Modbus server (if
autorefresh is not used)

60

Variable configura-
tion Type

Format of variable DWORD

Variable configura-
tion Address

Address of the variable on the modbus server 0

Communication Channels 80

SMARTUNIFIER User Manual, Release 1.10.0

OPC-UA

Characteristics - OPC-UA

OPC (Open Platform Communications) enables access to machines, devices and other sys-
tems in a standardized way. To learn more about the standard visit the OPC-UA website.

Information Model Requirements

• The following Node Types can be used to model data structures:

– Variables with a Simple Data Type.

– Variables with a Custom Data Type.

Configuration - OPC-UA Client

1. Select OPC UA Client as Channel Type.

2. Click the Configure button.

Communication Channels 81

https://opcfoundation.org/about/opc-technologies/opc-ua/

SMARTUNIFIER User Manual, Release 1.10.0

3. Make sure the root model node is selected to configure the OPC-UA Client

4. Enter an Application name

5. Input the TcpConfiguration

• Enter an IP address

• Enter the Port

• Define an Endpoint

• Set a Request timeout

6. Configure the defaultSubscriptionAttribute

• Define a Publishing interval and select the Unit

7. Configure monitoringParameters

• Set a Sampling interval and the Unit

• Enter a Queue size

• Enable Discard oldest depending on the use case

Communication Channels 82

SMARTUNIFIER User Manual, Release 1.10.0

8. Enable Subscription Groups depending on the use case

9. Input the Group name

10. Define a Publishing interval and select the Unit

11. Set a Sampling interval and the Unit

12. Enter a Queue size

13. Enable Discard oldest depending on the use case

14. Select the complex variable node.

15. Enable the Node configuration

16. Assign OPC-UA data block variables to corresponding variables in the Information Model
by selecting the variable in the tree

17. Assign data block

• Enable the Nodes configuration checkbox

• Enter the Node Id

Communication Channels 83

SMARTUNIFIER User Manual, Release 1.10.0

Description of configuration properties:

Property Description Example

IP Address Client IP 127.0.0.1
Port Client port 4840
Endpoint path Service name at the server endpoint demo
Publishing in-
terval

Interval in which Notification Messages are
sent

1

Sampling inter-
val

Sampling interval of monitored items 10

Queue size Max number ofmessages stored in the publish
queue

1

Node id Id of the item s='DB_Processing_Module'

Configuration - OPC-UA Server

1. Select OPC UA Server as Channel Type.

2. Click the Configure button.

3. Make sure the root model node is selected to configure the OPC-UA Server

4. Enter an application Name

5. Configure TCP

• Enter an Ip Address

• Enter the Port

• Define an Endpoint

6. Configure the NameSpace

• Provide a Root node name

Communication Channels 84

SMARTUNIFIER User Manual, Release 1.10.0

7. Configure the variable sampling interval

• Set the Initial delay in milliseconds

• Input the Sampling rate in milliseconds

Description of configuration properties:

Property Description Exam-
ple

IP Address Server IP 127.0.
0.1

Port Server port 4840
Endpoint
path

Service name at the server endpoint demo

Root node
name

The name of the top-level node in the OPCUA server's address space PLC

Initial delay The time the OPC UA client/server should wait before attempting to
connect to the OPC UA server

10

Sampling
rate

The rate at which the OPC UA client/server requests data from the
OPC UA server

1

REST

Characteristics - REST

Representational state transfer (REST) is a software architectural style that describes a uniform
interface between decoupled components in the Internet in a Client-Server architecture. To
learn more about the standard visit the REST section in Wikipedia website.

The characteristics of a REST server that need to be configured typically include the following:

Communication Channels 85

https://en.wikipedia.org/wiki/Representational_state_transfer

SMARTUNIFIER User Manual, Release 1.10.0

• Host and Port: The network address (IP or hostname) and port number on which the
server listens for incomming HTTP requests.

• Base URL/Context Path: The root path under which the REST API is accessible (e.g.
/api/v1).

• SSL/TLS (HTTPS): Certificates and protocols used for secure communication.

• Message Encoding: The character encoding used for the body of HTTP requests and
responses.

• Timeouts: Limits for request processing time, connection time, etc.

• Endpoint/Routes: The specific URI’s and HTTP methods (GET, POST, PUT, DELETE, etc.)
that the server will handle.

• Thread Pool/Concurrency Settings: Limits for the number of concurrent requests the
server can handle.

Configuration - REST Server

To configure a REST server in SmartUnifier, a few core concepts should be understood:

• InformationModel: defines the structure of resources on the server but also detailed con-
figuration of the endpoints/routes (Parametes, Headers, Body structure). In the current
version of SmartUnifier only Variables, Complex Variables and Commands can be used
for REST server configuration.

• Communication Channel: specifies how the defined structure will be communicated to
clients.

Variables and Complex variables can be used together with the rest server as storage for data.
For example you have an equipment with all kind of data points like temperature, pressure, etc.,
these data points can be stored in a complex variable and the rest server can be configured to
return the data in a structured way.

Commands can be used to execute actions on the server. Command parameters can be used
as headers, url parameters or body content. Command reply can be used retrieve the return
code, headers and body of the executed command.

Communication Channels 86

SMARTUNIFIER User Manual, Release 1.10.0

General REST Server channel configuration:

Property Description Example

pathPrefix root path under which the REST API is accessible /api/v1
IP The IP address of the REST server localhost
Port The port of the REST server 8080
Default content
type

The default content type of the REST server. Default
value is application/json.

application/
json

Webapp When enabled the REST server will be able to be con-
figured to host a web application.

SSL When enabled the REST server will be able to be con-
figured to use SSL encryption.

Message encoding Encoding standard for messages ISO-8859-1,
UTF-16

Maximum Handling
Time in ms
Log data Show message body in logs

Threadpool size Number of threads that should handle incomming re-
quests

0

Webapp configuration

Property Description Example

Warfile The path to the WAR file of the web application. c:/helloworld.war
Context path The path where the web application can be accessed. /we-

bapp/helloworld

SSL configuration

Prop-
erty

Description Example

Key-
store

Select to specify where are the SSL certificates
stored.

Java Certificate Keystore or Win-
dows Certificate Management

Trust-
store

Select to specify where are the trusted certifi-
cates stored.

Java Certificate Keystore or Win-
dows Certificate Management

Port Optional configuration to specify https port in
case http and https are both enabled

9445

Java Certificate Keystore configuration

Property Description Example

Keystore file path The path to the Java KeyStore file. c:/keystore.jks
Password The password for the Java KeyStore file. password

Communication Channels 87

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

To create a test certificate in the Java Certificate Keystore, use the following commands:
(change all entries within ’ ’ to match your specifics)

SmartUnifierManager\jre\bin\keytool.exe -genkeypair -keyalg RSA -keysize 2048␣
→˓-keystore keystore.jks -alias SmartUnifier3 -dname "CN='smartunifier-https-
→˓vhost',OU=amorph.pro,O=Amorphsys,C=DE" -storepass 'changeit' -keypass
→˓'changeit' -validity 3650 -ext KeyUsage=digitalSignature,dataEncipherment,
→˓keyEncipherment,keyAgreement -ext ExtendedKeyUsage=serverAuth,clientAuth

SmartUnifierManager\jre\bin\keytool.exe -v -list -keystore keystore.jks -
→˓storepass changeit

Windows Certificate Management configuration

Property Description Example

Certificate Name
(optional)

The name of the certificate to use.

Type Specifies in which windows store the certificate is lo-
cated.

Current
User MY

Provider Specifies the cryptographic service provider (CSP) to use
for certificate operations.

SunMSCAPI

There are 4 supported stores where the certificate can be placed:

• Local Machine MY Stores certificates and private keys accessible to all accounts on the
system.

• Local Machine ROOT Contains root CA certificates and trusted self-signed certificates
accessible to all accounts on the system.

• Current User MY Stores personal certificates and private keys accessible only to the cur-
rent user.

• Current User ROOT Contains root CA certificates and trusted self-signed certificates ac-
cessible only to the current user.

ò Note

To create a test certificate in the Windows Certificate Store, use the following PowerShell
command:

New-SelfSignedCertificate -DnsName localhost -CertStoreLocation cert:\
→˓LocallMachine\Root

Communication Channels 88

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

Because this certificate is stored in Local Machine MY, you need to run the SMARTUNIFIER
as an Administrator to access it.

Variable and Complex Variable configuration

No configurations are needed for the variable and complex variable nodes. Server will automat-
ically create routes based on the pathPrefix and variable path. E.g. if the pathPrefix = /api/v1
and the variable is created in the root of the information model, with the name temperature, the
route will be /api/v1/Variable/temperature. If the variable is created under the Measurements
complex variable, the route will be /api/v1/Variable/Measurements/Variable/temperature. But
also /api/v1/Variable/Measurements route will be available. For both variable types GET, PUT,
POST methods will be available.

Command configuration

By default commands are disabled. To enable commands you have to select it in the chan-
nel configuration from the information model tree. By checking the “Command routed”
you enable that command. If no other configuration is done a default route will be cre-
ated based on the pathPrefix. E.g. if the pathPrefix = /api/v1 and the command is cre-
ated in the root of the information model, with the name getTemperature, the route will be
/api/v1/Command/getTemperature. As for the variables GET, PUT, POSTmethods will be avail-
able.

Command configuration details

Prop-
erty

Description Example

URL URL of the REST API. URL is relative to the pathPrefix http://
localhost:8081/
api/v1/
dataPoint/${id}

Http-
Method

HTTP method for the action performed by the Client. GET, POST, PUT

Con-
tent
Type

Is used to indicate the media type of the resource. Default
value is default meaning that the content type will be the
same as the default content type of the REST server.

application/
json

reply
con-
tent
type

Is used to indicate the media type of the reply. Default value
is default meaning that the content type will be the same as
the default content type of the REST server.

application/
json

Configuration - REST Client

The following sample configuration shows a GET request using url parameters.

1. Select the root model node in the tree on the left

2. Select the content type - defines the media type of the associated representation

Communication Channels 89

SMARTUNIFIER User Manual, Release 1.10.0

3. Set the wait timeout

4. Select the Command node

5. Enable the Command routes checkbox for the configuration of the following fields:

• Enter the URL - If URL parameters are used then add each parameter in the following
syntax ${id}

• Select the HTTP method.

6. Headers (Optional) - Enable the checkbox Headers for the configuration of the following
fields:

• Enter the name of the header

• Enter the value

7. Add multiple header entries by clicking the Add button

8. Delete a header by clicking the Delete button

9. Select the Authentication type

10. Select the Message encoding standard

11. Check the box to Log data (E.g., the body of a request).

Communication Channels 90

SMARTUNIFIER User Manual, Release 1.10.0

12. URL Parameters (Optional) - Select a custom variable node

13. Enable the Command routes for the configuration of the following fields:

• Select the Content Type

• (Optional) Enter a Field Name in case the Information Model Node is not matching
the REST API

Description of configuration properties:

Communication Channels 91

SMARTUNIFIER User Manual, Release 1.10.0

Property Description Example

URL URL of the REST API. http://localhost:8081/
api/v1/dataPoint/${id}

HttpMethod HTTP method for the action per-
formed by the Client.

GET, POST, PUT

HeaderName and
Header Value

To provide server and client with ad-
ditional information

Retry-After: 12

Default Content
Type

Is used to indicate the media type of
the resource.

application/json

RouteHeaderCon-
figuration

Headers represent the meta-data as-
sociated with the API request

Name, Value

Authentication
Type

Type of the Authentication Basic, Digest, Kerberos,
NTLM, SPNEGO

Content Type of Pa-
rameter Nodes

Type of the Parameter Parameters, Body, Header,
None

Field Name For non-matching Information Model
nodes and API spelling

String

WaitTimeoutDura-
tion

Timeout in seconds until request is
failing

10

Message encoding Encoding standard for messages ISO-8859-1, UTF-16

SECS/GEM

Characteristics - SECS/GEM

The SECS/GEM is the semiconductor's equipment interface protocol for equipment-to-host
data communications. In an automated fab, the interface can start and stop equipment pro-
cessing, collect measurement data, change variables and select recipes for products. To learn
more about the standard visit the SECS/GEM section in Wikipedia website.

Information Model Requirements

• The first Node after the root node can be of type Event , Command or Variable

• The following Node Types can be used under the Event Node:

– Variables with a Simple Data Type represents the key-value pairs.

– Variables with a Custom Data Type represent objects that can contain key-value
pairs.

Communication Channels 92

https://en.wikipedia.org/wiki/SECS/GEM

SMARTUNIFIER User Manual, Release 1.10.0

Configuration - SECS/GEM Client

1. Select Secs Gem Client as Channel Type.

2. Click the Configure button.

3. Make sure the root model node is selected to configure the SECS/GEM Client

4. Enter the device configuration:

• input the equipment-to-host Ip address

• type in the TCP Port for the communication

• input the Device Id

5. Enter the Data Formats

• Input CEID - format for event Ids

• Enter RPTID - format for report Ids

• Input ALID - format for alarm Ids

6. Input timeout for:

• T3 - Reply Timeout in the HSMS protocol.

• T5 - Connect Separation Timeout in the HSMS protocol used to prevent excessive TCP/IP
connect activity by providing a minimum time between the breaking, by an entity, of a
TCP/IP connection or a failed attempt to establish one, and the attempt, by that same
entity, to initiate a new TCP/IP connection.

Communication Channels 93

SMARTUNIFIER User Manual, Release 1.10.0

• T6 - Control Timeout in the HSMS protocol which defines the maximum time an HSMS
control transaction can remain open before a communications failure is considered to
have occurred. A transaction is considered open from the time the initiator sends the
required request message until the response message is received.

• T7 - Connection Idle Timeout in the HSMS protocol which defines the maximum amount
of time which may transpire between the formation of a TCP/IP connection and the use
of that connection for HSMS communications before a communications failure is con-
sidered to have occurred.

• T8 - Network Intercharacter Timeout in the HSMS protocol which defines the maximum
amount of time which may transpire between the receipt of any two successive bytes
of a complete HSMS message before a communications failure is considered to have
occurred.

7. Select the logging type for the required Node Types:

• Check the Enable box

• Check the Log Data box

8. Click on the Apply button

9. Select the Event node to configure the event context

Communication Channels 94

SMARTUNIFIER User Manual, Release 1.10.0

10. Click to check the Events box

11. Enter the event context Id which will trigger the event in the Information Model

12. Click on the Apply button

13. Select the variable in the tree

14. Click to check the variables box and configure the Secs variable context

• select the variable Type

• enter the variable Id

• click the Is SV box to check if the variable is a SV

• input the variable Name

Description of configuration properties:

Communication Channels 95

SMARTUNIFIER User Manual, Release 1.10.0

Property Description Example

Ip IP address of the Equipment http://localhost
Port TCP port for the communication 5000
Device Id Id of the equipment NJ-300
CEID Format for event Ids U4
RPTID Format for report Ids U4
ALID Format for alarm Ids U4
Timeouts Time interval the connection times out in milliseconds 45000
T3 Reply timeout in the HSMS protocol 10000
T5 Connect Separation Timeout in the HSMS protocol 5000
T6 Control Timeout in the HSMS protocol 10000
T7 Connection Idle Timeout in the HSMS protocol 5000
T8 Network Intercharacter Timeout in the HSMS protocol 10000
Id Id of the equipment event which will trigger the event E32
Type Type of variable U1
Id Variable Id V56
Type Commands - Type of the message S2F41
Id Commands Id C33
RCMD Name of command if it is different from the command Id C1

Email

Characteristics - Email

SMARTUNIFIER provides the capability of integrating the email protocols. The email protocols
define the mechanism of the email exchange between servers and clients. An email protocol
is a group of rules which ensure that emails are properly transmitted over the Internet.

Information Model Requirements

• The following Node Types can be used to model a register:

– Variables with a Simple Data Type.

– Variables with a Custom Data Type.

Configuration - Email

1. Select EMail as Channel Type.

2. Click the Configure button.

3. Make sure the root model node is selected to configure the Email Client.

Communication Channels 96

SMARTUNIFIER User Manual, Release 1.10.0

4. Enable Incoming server for configuration, based on the email provider:

• Select the Protocol

• Input the Hostname

• Provide the Port

• Input the Folder name

• Select the Connection security

• Choose the Authentication method

• Input credentials

• Configure the Polling interval for checking new emails

• Configure the Timeout length

5. Enable Outgoing server for configuration, based on the email provider:

• Input the Hostname

• Provide the Port

Communication Channels 97

SMARTUNIFIER User Manual, Release 1.10.0

• Input the From hostname

• Select the Connection security

• Choose the Authentication method

• Input credentials

• Configure the Polling interval for checking new emails

• Configure the Timeout length

6. Click on the Apply button.

7. Select the Event node.

8. Enable Sender for configuration:

• Input the Subject if not using a Subject variable under the Event node

• Provide the Receiver address if not using a To variable under the Event node

• Input the Html email template (optional)

9. Enable Receiver for configuration:

• Input filter based on the Sender

• Provide filter based on the Subject

10. Click on the Apply button.

Communication Channels 98

SMARTUNIFIER User Manual, Release 1.10.0

• Example of sending the value of a Variable:

11. Select the Variable:

• If the variable is using a key name (To, From, Subject, Body) no additional configuration
is needed

• Example of Variable used as Subject:

12. Click on the Apply button to finish.

Description of data type format:

Communication Channels 99

SMARTUNIFIER User Manual, Release 1.10.0

Data Type Size Range

BYTE, USINT, UInt8 8 Bit 0 - 255
WORD, UINT, UInt16 16 Bit 0 - 65.535
DWORD,UDINT,
UInt32

32 Bit 0 - 4.294.967.295

LWORD,ULINT, UInt64 64 Bit 0 - 2^64-1
SINT, Int8 8 Bit –128 - 127
INT, Int16 16 Bit –32.768 - 32.767
DINT, Int32 32 Bit –2.147.483.648 - 2.147.483.647
LINT, Int64 64 Bit –2^63 - 2^63-1
REAL, Float32 32 Bit -3,402823e+38 - 3,402823e+38
LREAL, Float64 64 Bit -1,7976931348623158e+308 - 1,

7976931348623158e+308

Description of configuration properties:

Property Description Example

Protocol Incoming server protocol IMAP
Incoming Hostname Incoming server address imap.domain.com
Port Server port 143
Folder Incoming emails folder INBOX
Connection security Communication security stan-

dards
SSL/TLS

Polling length Automatic polling of Email
server

60

Timeout length Time interval the connection
times out

10

Outgoing Hostname Outgoing server address smtp.domain.com
Outgoing From Sender Email address name@domain.com
Subject Email subject MySubject
To Receiver address name@domain.com
Html email template for
body

HTML code for email body MyTemperature:
$(temperature)

From filter Filter by sender using regex *.domain.*
Subject filter Filter by subject using regex *MySubject*

AWS SiteWise IoT

Characteristics - AWS IoT SiteWise

The AWS IoT SiteWise Channel enables you to send data directly to assets measurements via
the AWS IoT SiteWise API.

Information Model Requirements

• The first Node after the root node can be of type Event or Variable .

• The following Node Types can be used under the Event Node or Variable Node:

– Variables with a Simple Data Type represent measurements.

Communication Channels 100

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/ingest-api.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/asset-properties.html#measurements

SMARTUNIFIER User Manual, Release 1.10.0

– Variables with a Custom Data Type represent asset models.

• The following measurement data types can be used when creating a variable of a Simple
Data Type:

– String

– Int

– Double

– Boolean

ò Note

Make sure that the Information Model is available in the AWS IoT SiteWise service. You can
use the AWS SiteWise extension in order to export an SMARTUNIFIER Information Model to
AWS IoT SiteWise.

Configuration - AWS IoT SiteWise

The following sample configuration shows how a AWS IoT SiteWise Channel is created.

1. Select AWS Sitewise as Channel Type.

2. Click the Configure button.

Communication Channels 101

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-asset-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/measurements.html

SMARTUNIFIER User Manual, Release 1.10.0

3. Enter the SiteWise configuration:

• Enter the group of the Information Model

• Enter the name of the Information Model

• Enter the profile from the credential file that should be used

• Enter the region of the AWS Iot SiteWise service you are using

Description of configuration properties:

Property Description Example

Group name Information Model group name demo
Model name Information Model name Analytics
Credentials Profile Profile from the credential file default
AWS Region Region of the AWS Iot SiteWise service eu-central-1

File Formats / Layers

CSV

CSV to Model

The CSV to Model layer converts CSV data into a structured model representation. It allows to
configure various options such as separator, string delimiter, and timestamp format for parsing
the CSV file.

1. Ensure the root model node is selected in the Information Model.

2. Enter the Separator used in the CSV-file.

3. (Optional) Enter a String delimiter used in the CSV-file.

4. (Optional) Enter a EOL delimeter.

5. (Optional) Enter a Timestamp format.

Communication Channels 102

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/guide_credentials_profiles.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

SMARTUNIFIER User Manual, Release 1.10.0

6. (Optional) Check the Ignore first line checkbox if the first line of the CSV-file contains the
column names.

7. If necessary, adjust the default Wait timeout interval.

8. Select the Event node in the Information Model.

9. Check the Enable Event checkbox if you want to set a filter using a regular expression.

JSON

JSON to Model

The naming of JSON elements can be changed if necessary, for example, if the name is not
permissible as a variable node name. This applies to both incoming JSON data (e.g., when
using the File Reader) and outgoing JSON data (e.g., when using the File Writer).

To change the name of a key in the JSON, the following steps are necessary:

1. Ensure the variable is selected in the InformationModel (Parent Nodes have to be enabled
as well).

2. Select the checkbox Variable Configuration

3. Enter a new name in the Label field

Communication Channels 103

SMARTUNIFIER User Manual, Release 1.10.0

XML

String to XML

Pretty Print

When outputting XML data (e.g., when using the File Writer), it is possible to pretty print the
XML data.

To enable pretty printing, the following steps are necessary:

1. Ensure the root model node is selected in the Information Model.

2. Select the Pretty Print checkbox.

3. Enter a value for Width. The width parameter defines the desired maximum width of the
output string in characters.

4. Enter a value for Step. The step parameter controls the indentation step, specifying the
number of spaces used for each level of indentation in the output.

5. (Optional) SelectMinimize Empty. When selected, the pretty printer will use the full open-
ing and closing tag format (<element></element>) for empty elements.

XML to Model

The naming of XML elements can be changed if necessary, for example, if the name is not
permissible as a variable node name. This applies to both incoming XML data (e.g., when using
the File Reader) and outgoing XML data (e.g., when using the File Writer).

To change the name of an XML element, the following steps are necessary:

1. Ensure the variable is selected in the InformationModel (Parent Nodes have to be enabled
as well).

2. Select the checkbox Variable Configuration

Communication Channels 104

SMARTUNIFIER User Manual, Release 1.10.0

3. Enter a new name in the Label field

General Configurations

These configurations apply for all Communication Channel Types.

Framework Configuration

The Framework Configuration enables insights into data handled by Mapping Rules. If enabled,
logs will be generated once Rules are triggered and executed. These logs are visible then by
default in the INFO Log Level as well as in the Log Viewer.

The following Framework Logging Configurations are available:

• Stateful Variable

• Stateless Variable

• Event

• Command

For each configuration there are two ways to use logging:

• Enable: Logs out information about the Node Type that was executed by the Rule.

• Log Data: Logs out in JSON-format the actual data of the Node Type that was executed
by a Rule.

Communication Channels 105

SMARTUNIFIER User Manual, Release 1.10.0

Event Logging

To use the Event Logging enable the checkbox EventLogging and for more detailed logging
EventDataLogging.

Event Logging Output

[INFO] - EventDefinition - Received Event: /Model/bcdbbfd3-cdbe-4ade-8a73-
→˓3788e6815c46/Event/ReleaseOrder

Event Data Logging Output

[INFO] - EventDefinition - Received Event: /Model/bcdbbfd3-cdbe-4ade-8a73-
→˓3788e6815c46/Event/ReleaseOrder={"Quantity":10,"ProductNumber":"Mv5",
→˓"OrderNumber":"Ord154","EquipmentId":"4-SWC2"}

Mappings

What are Mappings

Mappings represent the SMARTUNIFIER component that defines when and how data exchange
or transformation occurs between two or more Information Models. Essentially, it acts as a
translator between different Information Models.

Mappings 106

SMARTUNIFIER User Manual, Release 1.10.0

A Mapping consists of one or more Rules. A Rule is made up of a Trigger and a list of Actions:

Trigger: specifies when the data exchange or transformation occurs. It can be an element in
the Information Model or time-based (e.g., every 5 minutes). See the full list of Triggers below:

• Node Types in the Information Model such as:

– Variables

– Events

– Commands

– Properties

– Arrays

• Schedulers, which are time-based triggers, offer the following options:

– Fixed Rate - The rule is triggered at a fixed interval.

– Fixed Delay - The rule is triggered at a fixed interval with an initial delay.

– Timeout - The rule is triggered once after a specified delay.

How the different triggers are used is explained in the following sections onGraphical andCode-
based approaches to create a Rule.

Actions: define how the data is mapped from source Node Types to target Node Types.

How to create a new Mapping

Follow the steps below to create a new Mapping definition:

• Go the Mappings perspective by clicking the "Mappings" button (1)

Mappings 107

SMARTUNIFIER User Manual, Release 1.10.0

• The following screen displays a list view of existing mappings.

• To add a new mapping, select the "Add Mapping" button located in the top right corner
(2).

• On the subsequent screen, provide the following mandatory information: Group, Name,
and Version. A description, which is optional, can also be added (3).

• Click the "Add Model" button (4).

• Select the Information Model for this mapping and enter a short name for it. The short
name is used to access elements within the model. (5)

• To remove amodel from the mapping, click the "RemoveModel" button (6). This action is

Mappings 108

../../_images/SideMenuMappingsNew.png
../../_images/ListMappingsNew.png

SMARTUNIFIER User Manual, Release 1.10.0

only possible if elements of the model are not used within the mapping's rules. To delete
a model, ensure that you first remove its elements from the rules.

• Once all mandatory fields have been filled in, the "Save" button located in the top right
corner will be enabled. Click this button to submit the new Mapping (7).

• The newly created mapping is now visible in the list view.

How to create Rules

To create Rules, follow the steps described below:

• Select the "Edit" button (1).

• Select the "Add Rule" button located in the top right corner (2).

• Two options are available:

– Single Rule - Defining a single trigger and a list of actions. The Trigger can be an
element in the Information Model or time-based (e.g., every 5 minutes).

– Multi Rule - Defining multiple triggers, each with assignments between source and
target elements. The Trigger is the change of a source element in the Information
Model.

Rule Naming Convention

Mappings 109

../../_images/AddNewMappingBasicConfig.png
../../_images/ListMappingEdit.png
../../_images/EditMappingView.png

SMARTUNIFIER User Manual, Release 1.10.0

The name of the rule should reflect the logic that is executed when the rule is triggered. Below
are some examples:

Example Scenarios Good Naming

Inserting data into a database Database_Insert
Executing a POST/PUT request on a REST server Update_Data
Reacting to an input (e.g., StartOrder button on a MES) StartOrder

Graphical

When creating rules using the Graphical Editor, a rule type needs to be selected first: Single or
Multi Rule.

Single Rule

• The following screenshot shows the Single Rule Editor. The rule contains the following
components:

– Name and an optional Description field.

– Trigger which can be either a Tree Member of the Information Model, Fixed Rate
Scheduler or Fixed Delay Scheduler.

– Actions where source-to-target assignments are defined betweent the elements of
the Information Models.

• Enter "Rule name" (3).

• Select the "Trigger Type" (4):

– Tree Member - rule with an Information Model tree member as trigger.

– Fixed Rate Scheduler - rule with a time based trigger, using a Cron Expression.

– Fixed Delay Scheduler - rule based on a scheduled delay.

– Timeout Scheduler - rule based on a timeout.

Trigger Types

Tree Member

• Drag and drop the Trigger from the model panes (1) into the trigger field (2).

Mappings 110

../../_images/AddNewRuleName.png

SMARTUNIFIER User Manual, Release 1.10.0

Fixed Rate Scheduler

Input a "Cron Expression" (1) to set the time based trigger. (E.g., 0 */5 * ? * * meaning the
trigger is set at every 5 minutes).

ò Hint

Cron expressions are primarily designed for specifying schedules in terms of seconds, min-
utes, hours, days, months, and weekdays. They do not support specifying intervals at the
millisecond level. To use millisecond intervals, use the Fixed Delay Scheduler.

Fixed Delay Scheduler

Input the trigger "Initial start Delay" (1), the "Period" delay (2) and the "Unit" (3).

Timeout Scheduler

Input the trigger "Timeout" (1) and the "Unit" (2).

Mappings 111

../../_images/AddNewMappingTriggerDragDrop.png
../../_images/AddNewMappingTriggerFixedRateScheduler.png
../../_images/AddNewMappingTriggerFixedDelayScheduler.png

SMARTUNIFIER User Manual, Release 1.10.0

Actions

Drag and drop the Target Information Model node (5) into the Target field (6).

A popup appears to select the assignment type:

• Simple - assignment of a source element to a target element both having the samecustom
data type - no need to assign each children elements separately

• Complex - assignment of a source element to a target element both having different cus-
tom data types

Mappings 112

../../_images/AddNewMappingTriggerFixedDelayScheduler.png
../../_images/AddNewMappingTargetAssignment.png
../../_images/AddNewMappingAssignmentType.png

SMARTUNIFIER User Manual, Release 1.10.0

Simple Assignment

When Source and Target are of the same data type they can be directly assigned to one another.

Follow the steps below to create a simple assignment:

Drag and drop the Source Information Model node (7) into the Source field (8). The Source and
the Target node data type must be matched one on one (e.g., DemoEventType to DemoEvent-
Type).

Complex Assignment

When the Source and Target differ in data type, their child nodes must be assigned individually.

Follow the steps below to create a complex assignment:

Drag and drop the Source InformationModel node children's (7) one by one into the Source field
(8).

Mappings 113

../../_images/RuleCombinations/Sample_Simple_Assignment.png
../../_images/AddNewMappingSimpleAssignment.png
../../_images/RuleCombinations/Sample_Complex_Assignment.png

SMARTUNIFIER User Manual, Release 1.10.0

ò Hint

If the Source and Target have different data types (e.g., Int and String), a type conversion
can be performed by using conversion functions .

• After all mandatory fields have been filled out, select the "Apply" button (9) to save the
newly created Rule.

• The Single Rule Editor is closed and the newly created Rule is displayed in the Rules List.

• Select the "Save" button placed in the upper right corner to save the Mapping.

Actions with Conditions

• Click on the "Add condition block" button (1).

• Drag and drop a tree member to build up the condition (2) and (3) or use the Literal Node
button to enter a custom value.

• Select a condition operator (4). The following operators are available: ==, !=, <, <=, >, >=.

Mappings 114

../../_images/AddNewMappingComplexAssignment.png
../../_images/ApplyNewRule.png

SMARTUNIFIER User Manual, Release 1.10.0

• To add multiple conditions (5) select the block operator (6).

• Click on the "Literal Node" button (7) to enter a custom value (8).

• Select a condition operator (9).

• Click on the "Add Condition Block" button (10) to add a new one.

• Click on the "Delete Condition Block" button (11) to remove a condition block and select
the "Delete" button (12) to remove the condition.

Mappings 115

../../_images/AddNewMappingAddCondition.png
../../_images/AddNewMappingMultipleConditions.png

SMARTUNIFIER User Manual, Release 1.10.0

In the "THEN" (13) section, drag and drop the Target and Source InformationModel nodes, using
either the simple or the complex assignment methods.

Actions with Custom Conditions

• Click on the "Source Code" button (1).

• Input code for a complex condition (2).

Mappings 116

../../_images/AddNewMappingDeleteConditions.png
../../_images/AddNewMappingThenConditions.png

SMARTUNIFIER User Manual, Release 1.10.0

• For the "THEN" section, either use drag and drop to add the target and source Information
Model nodes, or click the "Source Code" button (3) to input code.

Multi Rule

The following screenshot displays the Multi Rule Editor. Here, no specific trigger can be set;
instead, each source element from an Information Model behaves as a trigger. When a source
element is updated, the assignment to the target element is performed.

ò Note

The Multi Rule configuration treats each source as a trigger.

• Enter "Rule name" (3).

• Drag and drop the Source Information Model nodes (4) one by one into the Source field
(5).

• The Source and Target information must match on a one-to-one basis (e.g., String to
String). Allowed nodes for Source and Target include Simple Variables and Variables from
a Complex Variable.

• After all mandatory fields are filled out, click the "Apply" button (6) to save the newly cre-
ated rule.

• The Multi Rule Editor closes, and the newly created rule appears in the Rules List.

• Click the "Save" button (7) located in the upper right corner to save the mapping.

Mappings 117

../../_images/AddNewMappingConditionCode.png
../../_images/AddNewMultiRuleName.png

SMARTUNIFIER User Manual, Release 1.10.0

Implicit Type Conversion

Within the graphical mapping, Variables and Properties of different data types are implicitly
converted. For example, a variable of type String (1) can be assigned to a variable of type
Double (2) without the need for manual data type conversion through code entry.

The table below outlines the implicit conversions supported:

Data Type Convertible To/From

String Char, Byte, Short, Int, Long, Float, Double, LocalDateTime, Off-
setDateTime, Boolean

Long LocalDateTime, OffsetDateTime
LocalDateTime OffsetDateTime

Code-based Rules

Themain target of SMARTUNIFIER is to build up the connectivity between systems. Sometimes
integrations become more complex and it might require to build up Rules via the code editor
using the Scala programming language. SMARTUNIFIER extends the Scala programming lan-
guage with addition operators and methods to simplify the realization of data transfer between
Information Models.

Similar to Mappings via drag and drop, there is no knowledge of the underlying communication
protocol (e.g., MQTT, OPCUA, etc.) needed. Protocols are hidden behind the corresponding
Information Models. The parameter values of an Information Model are stored in the objects
of type VariableDefinition[T] or PropertyDefinition[T]. These contain additional information and
methods rather than just the parameter values. They also providemethods to listen for changes
and conversion between variable types.

Mappings 118

../../_images/AddedNewMultiRule.png
../../_images/InstanceSetup/Mappings/Conversions/ImplicitDataTypeConversion.png
https://www.scala-lang.org/

SMARTUNIFIER User Manual, Release 1.10.0

Basics

Rule construct

A rule always starts with a Trigger (1). The trigger can represent an element of the Information
Model, such as a Variable, Event, Command, or it can be time-based.

After the trigger, call mapTo (2) and define the function body by adding curly braces (3).

Depending on the trigger, declare the TriggerInstance (4). Use naming that corresponds to the
type of the trigger.

The Source (5) is the content of the TriggerInstance. For example, if the trigger is a Variable,
then the Source is an instance of that Variable.

To assign the Source to the Target, use the := operator (6).

The Target can be any variable you want to map to (7).

Compiling

Compile the code for the selected rule by clicking the "Compile" button (1) and check for com-
pilation errors before saving the rule.

Mappings 119

../../_images/Code/Rule_Construct_Empty.png
../../_images/Code/Rule_Construct.png
../../_images/MappingCompileRule.png

SMARTUNIFIER User Manual, Release 1.10.0

Logging

Logging can be added in the Rule implementation by calling - CommunicationLogger.log (line
5)

Listing 1: Rule with Logging

1 EquipmentModel.Alarm mapTo {variable =>
2 MesModel.EquipmentAlarm.send(event => {
3 Try {
4 event.EquipmentId := EnterpriseModel.EquipmentName
5 CommunicationLogger.log(variable, event)
6 }
7 })
8 }

Trigger Types

Tree Member

The following Information Model elements can be used as a trigger: Variables, Events, Com-
mands. The snippet below shows how the trigger is defined:

<Information Model>.<Element from the Information Model> mapTo { <Element
type> =>

Listing 2: Tree Member as Trigger

1 EquipmentDataModel.ItemNr mapTo { variable =>
2 Try {
3 EquipmentDataModel.DemoData.Temperature := RestServerModel.DemoData.

→˓Temperature
4 EquipmentDataModel.DemoData.Pressure := RestServerModel.DemoData.Pressure
5 }
6 }

Schedulers

With schedulers, you can execute Rules at specified times or intervals. You can choose from
the following scheduler types:

• Fixed Rate Scheduler

• Fixed Delay Scheduler

Typically, the scheduler is started automatically and executes the rule once the instance is
started, and used channels are in the "Connected" state.

However, you can manually trigger the execution and termination of a rule by using the
start/stop function of the scheduler:

Mappings 120

SMARTUNIFIER User Manual, Release 1.10.0

Listing 3: Start Rule

_trigger.Schedulers("<name of rule>").start()

Listing 4: Stop Rule

_trigger.Schedulers("<name of rule>").stop()

Fixed Rate Scheduler

Rules can be scheduled to run continuously at a fixed rate. Instead of defining an element of
the Information Model as a trigger, the fixedRateScheduler method can be used. The snippet
below shows how the fixed rate scheduler is defined:

_trigger.fixedRateScheduler(<Cron Expression>)

Listing 5: Fixed Rate Scheduler

1 _trigger.fixedRateScheduler("0/1 * * * * ? *") mapTo(() => {
2 model1.StringVariable := model2.StringVariable
3 })

Example expressions

Expression Description

0/1 * * * * ? Every second
0/20 * * * * ? Every 20 seconds
15 0/2 * * * ? every other minute, starting at 15 seconds past the minute.
0 0/2 8-17 * * ? every other minute, between 8am and 5pm (17 o’clock).
0 0/3 17-23 * * ? every three minutes but only between 5pm and 11pm
0 0 10am 1,15 * ? 10am on the 1st and 15th days of the month
0,30 * * ? * MON-FRI every 30 seconds on Weekdays (Monday through Friday)
0,30 * * ? * SAT,SUN every 30 seconds on Weekends (Saturday and Sunday)

Fixed Delay Scheduler

Rules can be scheduled to run at a fixed rate with an initial delay. The snippet below shows how
the fixed delay scheduler is defined:

_trigger.fixedDelayScheduler(<Initial Delay>, <Period>, <Unit>) mapTo(() =>

Mappings 121

SMARTUNIFIER User Manual, Release 1.10.0

Listing 6: Fixed Delay Scheduler

1 _trigger.fixedDelayScheduler(10, 60, SECONDS) mapTo(() => Try{
2 EquipmentDataModel.DemoData.Temperature := RestServerModel.DemoData.

→˓Temperature
3 EquipmentDataModel.DemoData.Pressure := RestServerModel.DemoData.Pressure
4 })

Timeout Scheduler

Rules can be scheduled to run after a specific timeout. The snippet below demonstrates how
the timeout scheduler is defined:

_trigger.timeoutScheduler(<Delay>, <Unit>) mapTo(() =>

Listing 7: Timeout Scheduler

1 _trigger.timeoutScheduler(60, SECONDS) mapTo(() => Try{
2 EquipmentDataModel.DemoData.Temperature := RestServerModel.DemoData.

→˓Temperature
3 EquipmentDataModel.DemoData.Pressure := RestServerModel.DemoData.Pressure
4 })

Target-to-Source Mapping

Node Types Sharing the Same Custom Data Type

When the target and source Node Types in the Information Model are both of the same Custom
Data Type, the Mapping can be simplified:

Listing 8: Mapping of two Events with the same type

event1 := event2

The two Node Types have to be of the same kind e.g., both are Events or both are Variables.

Node Types with different Custom Data Type

The examples demonstrate how to map values between source and target variables.

Variables to Events

This mapping is utilized when static data needs to be transformed into an Event. This is often
the case when data originates from a variable-based data server (such as OPC UA server, Mod-
bus, Iso-On-TCP) and is required to be mapped to an event or message-based target system
(like MQTT, Kafka, Databases, etc.).

The example below illustrates the mapping of variables from the EnterpriseModel and the
EquipmentModel to an Event within the MesModel:

• Trigger: EquipmentModel.Alarm (line 1)

• TriggerInstance of EquipmentModel.Alarm: variable (line 1)

Mappings 122

SMARTUNIFIER User Manual, Release 1.10.0

• Invoke the send method on the EquipmentAlarm Event (line 2) and define the TriggerIn-
stance as event (line 2)

• Variable assignment is performed using the assignment operator :=. Both target and
source are specified by entering the path of the variables in the Information Model, for
example, event.EquipmentId and EnterpriseModel.EquipmentName (line 4)

Listing 9: Rule - StartOrder - Variable/Event

1 EquipmentModel.Alarm mapTo {variable =>
2 MesModel.EquipmentAlarm.send(event => {
3 Try {
4 event.EquipmentId := EnterpriseModel.EquipmentName
5 event.OrderNr := EquipmentModel.CurrentOrder.OrderNr
6 event.MaterialID := EquipmentModel.CurrentMaterialID
7 event.AlarmInfo := EquipmentModel.AlarmInfo
8 CommunicationLogger.log(variable, event)
9 }

10 })
11 }

Event to Variables

This mapping is utilized when dealing with event-driven data that needs to be mapped to vari-
ables. This scenario often occurs when data originates from an event or message-based sys-
tem (e.g., MQTT, Kafka, Databases, etc.) and needs to be mapped to a variable-based data
server (such as OPC UA server, Modbus, Iso-On-TCP).

The example below outlines the mapping of values from the TransferNewOrder Event in the
MesModel into variables within the EquipmentModel:

• The Trigger is specified by entering the path of the Event MesModel.TransferNewOrder
(line 1). Since an Event is utilized as the Trigger, the TriggerInstance is appropriately
named event (line 1).

• In the function body, the Complex Variable NewOrder and the Simple Variable NewME-
SOrderFlag are provided with data from the MesModel's TransferNewOrder Event.

• Targets are specified by entering the path of the variables, such as Equipment-
Model.NewOrder.OrderNr (line 3).

• To assign values to OrderNr,MaterialNr and Quantity of the Complex VariableNewOrder,
enter the TriggerInstance event followed by the variable name from the TransferNewOrder
Event, e.g., event.OrderNr (line 3).

• In this case it is also possible to assign the variable NewMesOrderFlag a Boolean value
like true (line 6)

Listing 10: Rule - TransferNewOrder - Event/Variable

1 MesModel.TransferNewOrder mapTo { event =>
2 Try {
3 EquipmentModel.NewOrder.OrderNr := event.OrderNr
4 EquipmentModel.NewOrder.MaterialNr := event.MaterialNr

(continues on next page)

Mappings 123

SMARTUNIFIER User Manual, Release 1.10.0

(continued from previous page)

5 EquipmentModel.NewOrder.Quantity := event.Quantity
6 EquipmentModel.NewMESOrderFlag := true
7 }
8 }

Event to Commands

This mapping is employed when dealing with event-driven data that needs to be mapped to a
Command. This scenario may arise when incoming event or message-driven data should be
enriched with data from another system (such as a database or a REST server) before being
further mapped to another event-driven message.

The following scenario describes a rule that maps incoming data from a file to MQTT. When
the FileEvent is triggered, the rule first executes the DatabaseCommand to retrieve data from a
database (the result of the reply can be accessed directly afterward):

• Trigger is specified by entering the path of the Event file.FileEvent (line 1). Since an Event
serves as the Trigger, the TriggerInstance should be named event (line 1)

• Within the function body, execute a Command. The execution of a Command is specified
by entering the path of the Command and calling the execute function at the end of the
path (line 2). The TriggerInstance is named command (line 4).

• Lines 4-6 illustrate the first part of the Command execution, where values from the source
model are assigned to the Command Parameters.

• Every Command includes a Reply, which necessitates defining the reply section (line 8).

• After retrieving data from the database, send out the data over MQTT. In the reply func-
tion body, specify the path of theMqttEvent. Since this is the second Event, the TriggerIn-
stance can be named event1 (line 10).

• Within the reply function body, assign values from the FileEvent (lines 11-13) as well as
from the Reply (lines 14-15) to the MqttEvent.

Listing 11: Rule - File2MqttWithDB - Event/Commands

1 file.FileEvent mapTo {event =>
2 database.DatabaseCommand.execute(command => {
3 Try {
4 command.orderNr := event.orderNr
5 command.materialNr := event.materialNr
6 CommunicationLogger.log(event, command)
7 }
8 }, reply => {
9 mqtt.MqttEvent.send(event1 => {

10 Try {
11 event1.Quality := event.quality
12 event1.OrderNr := event.orderNr
13 event1.MaterialNr := event.materialNr
14 event1.Customer := reply.customer
15 event1.Product := reply.product
16 CommunicationLogger.log(reply, event1)

(continues on next page)

Mappings 124

SMARTUNIFIER User Manual, Release 1.10.0

(continued from previous page)

17 }
18 })
19 })
20 }

Properties to Variables

When a Property serves as the source and a Variable as the target, the mapping is straightfor-
ward: the Property is assigned to the Variable using the assignment operator :=. This approach
may be utilized when dealing with an XML structure that includes XML-Attributes, which are
modeled as Properties in the Information Model, while the target system expects the data to
be presented as Variables.

Listing 12: Rule - Property/Variables

1 propertyNodeType := variableNodeType

Mapping including Lists

If there are Lists structures within an Information Model that need to be mapped to another
Information Model, it is necessary to iterate through the list items using a foreach loop.

The following scenario describes a Rule that maps incoming data from a file to MQTT. The
MQTT Model contains a List called DataList.

• Initialize a variable named listItem reference a newItem in the DataList (line 6)

• Then, assign the value from the file event to this variable listItem (line 8)

Listing 13: Rule - FileToMQTT - Lists

1 csv.FileEvent mapTo { event =>
2

3 event.items.foreach { item =>
4 mqtt.MqttEvent.send(event1 => {
5 Try {
6 val listItem = event1.DataList.newItem
7

8 listItem.Timestamp := item.Timestamp
9 listItem.Pressure := item.Alarmlevel

10

11 CommunicationLogger.log(event, event1)
12 }
13 })
14 }
15 }

ò Note

Lists can only be mapped in the code view.

Mappings 125

SMARTUNIFIER User Manual, Release 1.10.0

SMARTUNIFIER Code Constructs

Rules are written in the Scala programming language. SMARTUNIFIER also includes custom
code constructs that can be used within mappings, allowing for operations such as type con-
versions directly at the variable level.

Converters

If the variables to be mapped to each other are not of the same data type, use the provided
type converters. Converters can be used on Information Model nodes such as Variables and
on Properties .

Method Description Example

toBoolean(definition:
TVariableDefinition[T])

Converts a variable to a Boolean to-
Boolean(m1.IntVariable)

toBoolean(definition:
TPropertyDefinition [T])

Either the literal true or the literal false ''

toByte (definition: TVari-
ableDefinition[T])

Conversion of a variable to an Byte to-
Byte(m1.IntVariable)

toByte (definition: TProp-
ertyDefinition [T])

8 bit signed value. Range from -128 to 127 ''

toShort (definition: TVari-
ableDefinition[T])

Conversion of a variable to a Short toShort(m1.IntVariable)

toShort (definition:
TPropertyDefinition [T])

16 bit signed value. Range -32768 to 32767 ''

toInt (definition: TVari-
ableDefinition[T])

Conversion of a variable to an Integer toInt(m1.StringVariable)

toInt (definition: TProper-
tyDefinition [T])

32 bit signed value. Range -2147483648 to
2147483647

''

toLong (definition: TVari-
ableDefinition[T])

Conversion of a variable to a Long to-
Long(m1.IntVariable)

toLong (definition: TProp-
ertyDefinition [T])

64 bit signed value. Range
-9223372036854775808 to
9223372036854775807

''

toFloat(definition: TVari-
ableDefinition[T])

Conversion of a variable to a Float toFloat(m1.IntVariable)

toFloat (definition: TProp-
ertyDefinition [T])

32 bit IEEE 754 single-precision float ''

toDouble(definition:
TVariableDefinition[T])

Conversion of a variable to a Double toDou-
ble(m1.IntVariable)

toDouble (definition:
TPropertyDefinition [T])

64 bit IEEE 754 double-precision float ''

toStr(definition: TVari-
ableDefinition[T])

Conversion of a variable to a String toStr(m1.IntVariable)

toStr (definition: TProper-
tyDefinition [T])

A sequence of Chars ''

Mappings 126

SMARTUNIFIER User Manual, Release 1.10.0

Math Operators

Math Operator methods can be utilized to perform calculations, such as addition, subtraction,
multiplication, and division. If there's a need to perform calculations on the values of a variable
within the mapping before sending data to the target system, the following methods can be
employed:

Method Description Example

add(Option[T],Double) Addition of a variable with a nu-
meric data type and a Double value

add(model.IntVariable, 2)

sub(Option[T],Double) Subtraction of a variable with a nu-
meric data type and a Double value

sub(model.IntVariable,
2.5)

mult(Option[T],Double) Multiplication of a variable with a
numeric data type and a Double
value

mult(model.IntVariable,
3)

div(Option[T],Double) Division of a variablewith a numeric
data type and a Double value

div(model.IntVariable,
3.5)

String Operators

String Operator methods can be utilized to perform String manipulation:

Mappings 127

SMARTUNIFIER User Manual, Release 1.10.0

Method Description Examples

concat(variable, variable) Concatenates two strings
together.

concat(myModel.myStringVariable,
"World")
concat("Hello",
myModel.myStringVariable)

concat(myModel.myStringVariableA,
myModel.myStringVariableB)

contains(variable, se-
quence)

Checks and returns true
if and only if this string
contains the specified se-
quence of char values.

contains(myModel.myStringVariable,
"Hello")

contains(myModel.myStringVariable,
myModel.myOtherStringVariable)

matches(variable, regex) Checks and return true
if the string matches the
given regular expression. matches(myModel.myStringVariable,

"Hello.*")

matches(myModel.myStringVariable,
myModel.myRegExStringVariable)

replace(variable, target,
replacement)

Replaces first occurrence
of a substring within the
string with the specified
replacement.

replace(myModel.myStringVariable,
"T", "X")

replace(myModel.myStringVariable,
myModel.search, "X")

replace(myModel.myStringVariable,
myModel.search,
myModel.replace)

replaceAll(variable, tar-
get, replacement)

Replaces all occurrences
of a substring within the
string with the specified
replacement.

replaceAll(myModel.myStringVariable,
"T", "X")

replaceAll(myModel.myStringVariable,
myModel.search, "X")

replaceAll(myModel.myStringVariable,
myModel.search,
myModel.replace)

substring(variable, be-
ginIndex)

Extracts a string that is
a substring of this string.
The substring begins with
the character at the spec-
ified index and extends to
the end of this string.

substring(myModel.myStringVariable,
3)

substring(variable, be-
ginIndex, endIndex)

Extracts a string that is
a substring of this string.
The substring begins at
the specified beginIndex
and extends to the char-
acter at index endIndex -
1.

substring(myModel.myStringVariable,
3, 7)

toLowerCase(variable) Converts all characters in
a string to lower case.

toLower-
Case(myModel.myStringVariable)

toUpperCase(variable) Converts all characters in
a string to upper case.

toUpper-
Case(myModel.myStringVariable)

trim(variable) Removes leading and
trailing whitespace from
a string / string variable.

trim(myModel.myStringVariable)

strip(variable) Similar to trim, removes
leading and trailing
whitespace from a string.

strip(myModel.myStringVariable)

Mappings 128

SMARTUNIFIER User Manual, Release 1.10.0

Helpers

Helpers are methods that can be used to simplify the mapping process. They can be used to
compare the value of a variable with a given value, or to map child variables from one complex
variable to another.

ò Hint

It is possible to convert a String to a Local- and OffsetDateTime without any extra parsing.

Method Description Example

equals(variable, variable) Compares the value of a
variable with a given value

equals(myModel.myStringVariable,
"Foo")

mapAndAssignChil-
dren(complexVariable1,
complexVariable2)

Maps child variables from
one complex variable to
another mapAndAs-
signChildren(<source>,
<target>). Variables must
be of the same type and
have the same id

mapAndAssignChil-
dren(m1.ComplexVariableDepth1,
m2.ComplexVariableDepth1)

Time conversions

ò Note

When dealing with OffsetDateTime, Zoneoffset.UTC is set as default.

ò Note

When formatting the following formats are set als defaults: ISO_DATE_TIME = "yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'", ISO_DATE = "yyyy-MM-dd", ISO_TIME = "HH:mm:ss.SSS'Z'"

Method structure explanation

• (1) Method name

• (2) Input type

• (3) Output type

Mappings 129

SMARTUNIFIER User Manual, Release 1.10.0

Method Description Example

longToOffsetDate-
Time(timestamp: Op-
tion[long], offset: Zo-
neOffset = ZoneOff-
set.UTC):OffsetDateTime

Parses a Unix
timestamp pro-
vided in a long
variable to Offset-
DateTime

longToOffsetDate-
Time(Option(1732873920000))
--> java.time.OffsetDateTime
longToOffsetDate-
Time(myModel.MyUnixTimestamp)
--> java.time.OffsetDateTime

longToLocalDate-
Time(timestamp: Op-
tion[long], offset: Zo-
neOffset = ZoneOff-
set.UTC):LocalDateTime

Parses a Unix
timestamp pro-
vided in a long
variable to Local-
DateTime

longToLocalDate-
Time(Option(1601536800000))
--> java.time.LocalDateTime
longToLocalDate-
Time(myModel.MyUnixTimestamp)
--> java.time.LocalDateTime

parseOffsetDate-
Time(dateTime: Op-
tion[String], format-
ter: DateTimeFormat-
ter = DateTimeFormat-
ter.ISO_OFFSET_DATE_TIME):OffsetDateTime

Parses a String to
OffsetDateTime

parseOffsetDateTime(Option("2024-
11-29T08:32:00+01:00")) -->
java.time.OffsetDateTime

parseLocalDate-
Time(dateTime: Op-
tion[String], format-
ter: DateTimeFormat-
ter = DateTimeFormat-
ter.ISO_LOCAL_DATE_TIME):LocalDateTime

Parses a String to
LocalDateTime

parseLocalDateTime(Option("2024-
12-13T10:15:30")) -->
java.time.LocalDateTime

formatOffsetDate-
Time(dateTime: Op-
tion[java.time.OffsetDateTime],
formatter: DateTimeFor-
matter = DateTimeFormat-
ter.ISO_OFFSET_DATE_TIME):String

Formats an Offset-
DateTime

formatOffsetDate-
Time(Option(java.time.OffsetDateTime))
--> "2024-11-29T08:32:00+01:00"

formatLocalDate-
Time(dateTime: Op-
tion[java.time.LocalDateTime],
formatter: DateTimeFor-
matter = DateTimeFormat-
ter.ISO_LOCAL_DATE_TIME):String

Formats a Local-
DateTime

formatLocalDate-
Time(Option(java.time.LocalDateTime))
--> "2024-12-13T10:15:30"

localDateTimeToOffset-
DateTime(dateTime: Op-
tion[LocalDateTime], off-
set: ZoneOffset = ZoneOff-
set.UTC):OffsetDateTime

Parses a Lo-
calDateTime to
OffsetDateTime

localDateTimeToOffsetDate-
Time(Option(LocalDateTime)) -->
java.time.OffsetDateTime

localDateTimeTo-
Long(dateTime: Op-
tion[LocalDateTime], off-
set: ZoneOffset = ZoneOff-
set.UTC):long

Parses a Local-
DateTime to long

localDateTimeTo-
Long(Option(LocalDateTime)) -->
1601536800000

offsetDateTimeToLocal-
DateTime(dateTime: Op-
tion[OffsetDateTime]):LocalDateTime

Parses an Offset-
DateTime to Local-
DateTime

offsetDateTimeToLocalDate-
Time(Option(OffsetDateTime))
--> 2024-12-13T10:15:30

offsetDateTimeToLong(date:
Option[OffsetDateTime]):long

Parses an Offset-
DateTime to Long

offsetDateTimeTo-
Long(Option(OffsetDateTime))
--> 1732873920000Mappings 130

SMARTUNIFIER User Manual, Release 1.10.0

Here are some example of some Date conversions:

ò Note

When converting a String to a Local-/OffsetDateTime, no parsing needs to be donemanually,
as its done automatically in the mapping.

Method Input Output

longToOffsetDateTime 1601536800000 2024-12-13T10:15:30+01:00
StringToLocalDateTime "2024-12-13T10:15:30" 2024-12-13T10:15:30
StringToOffsetDateTime "2024-11-29T08:32:00+01:00" 2024-11-29T08:32:00+01:00

Duringmapping, create a newRule, switch to the code view <> and follow the following concept:

SourceModel.SourceEvent/ComplexVar mapTo { event/variable =>
Try {

TargetModel.TargetEvent/ComplexVar := parsing method(event/variable.
→˓SourceVar)

}
}

Equipment.DateTimeConversion mapTo { event =>
Try {
target.complexVar.Local2Long := localDateTimeToLong(event.Local2Long)
target.complexVar.Long2Local := longToLocalDateTime(event.Long2Local)
target.complexVar.String2Local := parseLocalDateTime(event.String2Local)
target.complexVar.FormatLocal := formatLocalDateTime(event.FormatLocal)
target.complexVar.Offset2Local := offsetDateTimeToLocalDateTime(event.

→˓Offset2Local)
}

}

Loops (foreach)

In some use cases, it may be necessary to iterate through a collection if the Information Model
contains a list or an array. In this case, call the items method on the list element of the Infor-
mation Model, followed by foreach (line 13).

Listing 14: Code constructs - Loops

1 import java.time.LocalDateTime
2 import java.time.Instant
3 import java.time.ZoneId
4

5 equipment.FileEvent mapTo { event =>
6 val newImportDate = LocalDateTime.ofInstant(Instant.ofEpochMilli(System.

(continues on next page)

Mappings 131

SMARTUNIFIER User Manual, Release 1.10.0

(continued from previous page)

→˓currentTimeMillis()), ZoneId.systemDefault())
7 db.MainDatabaseEvent.send(event1 => Try {
8 event1.ImportDateTime := newImportDate
9 event1.StepId := event.StepId

10

11 event.analysisData.items.foreach {
12

13 case analysisDataType:␣
→˓ComplexCollectionVariableDefinition[AnalysisDataType] => {

14

15 val analysisDataItem = event1.analysisDataTable.newItem
16

17 analysisDataItem.name := analysisDataType.name
18 analysisDataItem.length := analysisDataType.length
19 }
20 }
21 })
22 }

Conditions (If - statements)

Within a rule, it's possible to implement conditions using Scala’s conditional expressions. If
statements can be used to test a condition before executing the subsequent block. For exam-
ple, this can be utilized to check if a certain condition is met before executing an event (line
3).

Listing 15: Code constructs - Conditions

1 equipment.ActiveOrder.State mapTo { variable =>
2 logger.info(s"Active order state: ${variable.value} - Processing Finished")
3 if (variable.value == 3) {
4 mes.NotifyOrderFinished.send(event => {
5 Try{
6 event.EquipmentId := equipment.EquipmentInformation.EquipmentType
7 event.OrderNr := equipment.ActiveOrder.OrderInformation.OrderNo
8 event.ProductNumber := equipment.ActiveOrder.OrderInformation.ProductNo
9 event.QuantityOk := equipment.ActiveOrder.QuantityOk

10 event.QuantityNOk := equipment.ActiveOrder.QuantityNOk
11 }
12 })
13 }
14 }

Exception Handling (Try/Catch)

Exception Handling is an integral part of the SMARTUNIFIER mapping logic. The mapTo and
send callbacks expect a return value of the Scala type Try. If an exception occurs in one of the
rules, SMARTUNIFIER logs the exception and displays a notification in the manager. Supported
Communication Channels take further actions once an exception has occurred. For example,
the File Reader Channel moves a file that initially triggered a rule into an error folder.

Mappings 132

SMARTUNIFIER User Manual, Release 1.10.0

In the example below, a Try block is placed after each command and event call (lines 2 and 4).

Listing 16: Code constructs - Exception Handling

1 database.update mapTo { (updateCommand, reply) =>
2 Try {
3 api.AmorphAPI.send(event =>
4 Try {
5

6 event.id := updateCommand.Identifier.Id
7 event.name := updateCommand.Identifier.Name
8

9 updateCommand.Status.items.foreach(item => {
10 val statusItem = event.status.newItem
11 statusItem.index := item.Index
12 statusItem.value := itemValue
13 })
14 }
15)
16 }
17 }

Breaking out of Rules

You can break out of a rule by calling the Break() method in your code. Any code defined after
the Break() method will not be executed.

Example 1: The Break() method can be used to stop the execution of the code if, for example,
a variable value is not present (lines 2-4) but is needed later (line 9).

Listing 17: Code constructs - Break()

1 def rule_r1(): Unit = {
2 if(model1.myVariable.isEmpty()) {
3 Break()
4 }
5

6 //... mapping code here ...
7

8 model1.myVariable.mapTo {
9 variable => model2.myVariable := variable

10 }
11 }

Example 2: Breaking out of a loop if the iterator does not have a next element (line 4) and calling
Break() (line 5).

Listing 18: Code constructs - Break()

1 def rule_r2(): Unit = {
2 val iterator = model1.myList.items.iterator
3 while(iterator.hasNext){

(continues on next page)

Mappings 133

SMARTUNIFIER User Manual, Release 1.10.0

(continued from previous page)

4 if(iterator.next().isEmpty()){
5 Break()
6 }
7 }
8 // ... mapping code here ...
9 }

Device Types

What are Device Types

The SMARTUNIFIER Device Type acts as a template for a Communication Instance that can
be reused (i.e., one instance represents one equipment). Multiple Communication Instances,
which share common configuration parameters, can be created based on one Device Type.

In the simplest integration scenario of a single equipment, one Device Type must be created to
create a Communication Instance. This enables to create and spin up two Instances for test
and production operation.

A Device Type itself contains one or multiple Mappings, which allows to build up communi-
cation flows between multiple systems (how this can be done is shown in the SMARTUNIFIER
Demonstrator). EachMapping contains one or multiple InformationModels with its associated
Communication Channel.

Device Types are especially important, when integrating several similar pieces of equipment or
devices.

How to create a new Device Type

Follow the steps described below to create a SMARTUNIFIER Device Type.

• Select the SMARTUNIFIER Device Type perspective (1).

Device Types 134

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the "Add Device Type" button in the upper right corner (2).

• The creation of a Device Type is divided into two parts. First, provide basic information
about theDevice Type, such as its Group, Name, andVersion. Additionally, you can provide
a short description, if desired (3).

• In the next step, provide one or multiple previously created Mappings. To do so,

– Click the "Add Mapping" button (4)

– After selecting a Mapping (5), the associated Information Models will appear

Device Types 135

../../_images/SideMenuDeviceTypes.png
../../_images/DeviceTypesTable.png

SMARTUNIFIER User Manual, Release 1.10.0

– If the wrong Mapping was selected, click the "Delete Mapping" button to remove it
from the Device Type (6)

– Finally, select a Communication Channel for each Information Model from the drop-
down (7)

• To save the new Device Type, click the "Save" button located in the top right corner of the
screen (8).

Communication Instances

What are Instances

A SMARTUNIFIER Instance is a dynamically created application that can be deployed to any
suitable IT resource (e.g., Equipment PC, Server, Cloud), and which provides the connectivity
functionality configured. Therefore, a SMARTUNIFIER Instance uses one or multiple Mappings
and selected Communication Channels from a previously defined Device Type.

The Communication Instance is the final component andwhen deployed it acts as a standalone
application that provides the connectivity between two or multiple systems. The granular con-
figuration of the Communication Channels can be done on this level (e.g., changing the IP ad-
dress) which is useful when there are multiple Communication Instances created based on the
same Device Type.

How to create a new Instance

Follow the steps described below to create a SMARTUNIFIER Instance.

• Select the SMARTUNIFIER Instances perspective (1)

Communication Instances 136

../../_images/AddDevicetypeMappings.png

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the "Add Instance" button in the upper right corner (2)

• Select a Device Type from the drop-down (3)

• The instance details are automatically populated based on the Device Type (4), but you
can still modify the Group, Name, Version, and Description fields as needed

• Mappings defined in the Device Type will appear in the Mapping area (5)

• To change the existing configuration or if no configuration has been made yet, click the
"Configure" button (6)

Communication Instances 137

../../_images/SideMenuInstance.png
../../_images/ListViewInstances.png

SMARTUNIFIER User Manual, Release 1.10.0

• Expand theAdvanced Settings option (7) to select the framework version (8) for the Com-
munication Channels. This allows backward compatibility for Communication Instances
created with previous versions of SMARTUNIFIER.

• Save the SMARTUNIFIER Instance by clicking the "Save" button (9)

• To deploy, run, and stop the Instance, navigate to the Deployment perspective.

Communication Instances 138

../../_images/ConfigurationAddNewInstanceMappings.png
../../_images/AdvancedSettingsAddNewInstanceMappings.png

CHAPTER

FOUR

CONFIGURATION COMPONENT MANAGEMENT

SMARTUNIFIER provides a comprehensive management of the configuration components:

• Group Filter

• Validation

• Component Version Control

• Operations

In order to keep the SMARTUNIFIER configuration components organized take a look on how
to name the configuration components.

Naming Convention

The configuration process of a SMARTUNIFIER Instance involves the creation of configuration
components such as Information Models, Communication Channels, Mappings, Device Types
and the Communication Instances themselves. Each configuration component needs to have
a group and a name as an identifier. The identifier helps to organize configuration components
and build up a hierarchical structure.

Group

The group can be used to leverage the concept of paths, similar to those used in file systems, by
concatenating logical entities together. In most cases, there is already a naming convention or
a certain style of naming for equipment in place. This convention can be adopted when naming
and organizing the configuration components.

Name

The name assigned to each configuration component should clearly reflect the entity being
integrated. The following table provides examples of appropriate naming conventions for the
specific configuration components:

139

SMARTUNIFIER User Manual, Release 1.10.0

Configuration Com-
ponent

Description Naming Exam-
ple

Information Model Name of the entity that is modeled CNC-Machine
Communication
Channel

Name of the entity that is connected to CNC-Machine

Mapping Name of the source and target entity CNC-
MachineToDatabase

DeviceType Name of the entity type that is integrated (CNC-
Machine)

CNC-Machine

Instance Specific name of the entity that is integrated
(Equipment)

CNC3000

Naming Examples

We recommend the following naming convention for improved comprehensibility.

Information Models & Communication Channels

Information Models and its associated Communication Channels should both have the same
naming.

System Group Format Name Format Example Group Example Name

Equipment /
Machines

Equipment-
Type.Manufacturer

Equipment-
Name

cnc.hefner CNC3000

IT-system System-
Type.Manufacturer

SystemName erp.sep SEP PRO 5000

Mappings

System Group Format Name Format Example Group Example Name

Equipment / IT-
system

Equipment-
Type.Manufacturer

Equipment-
ToSystem

cnc.hefner CNC3000ToERP

Naming Convention 140

../_images/InformationModel.png
../_images/CommunicationChannel.png

SMARTUNIFIER User Manual, Release 1.10.0

Device Types

System Group Format Name Format Example Group Example Name

Equipment / IT-
system

Re-
gion.PlantName.EquipmentManufacturer

Equipment-
ToSystemInte-
gration

ger-
many.facility1.cnc.hefner

CNC3000IntegrationTemplate

Communication Instances

The Communication Instance provides the connectivity between the physical equipment on the
shopfloor and IT-systems. It is the most granular configuration component that is created.

System Group Format Name Format Example Group Example Name

Equipment / IT-
system

Re-
gion.PlantName.EquipmentManufacturer

Equipment-
ToSystemInte-
gration

ger-
many.facility1.cnc.hefner

CNC3000Integration

Group Filter

The Group Filter enables easy filtering of configuration components by the group name, which
can be hierarchically structured using substrings separated by periods.

The Show All filter shows every component (1).

Group Filter 141

../_images/Mapping.png
../_images/DeviceType.png
../_images/Instance.png

SMARTUNIFIER User Manual, Release 1.10.0

Toapply a filter, click oneof the items in theGroup Filter list (2). The selected filter then becomes
visible at the top of the table (3).

The filter can be removed by clicking the selected item again, choosing the Show All option, or
clicking the cross icon at the filter on top of the table.

Validation

Validation indicates the status of the configuration components such as:

• Information Models

• Communication Channels

• Mappings

• Device Types

• Communication Instances

• Deployment

The status is displayed in the list table of each configuration component.

• If a component is valid, the valid icon is displayed

• If a component is not valid, the error icon is displayed

• If a component is in the process of being validated, the compiling icon is displayed

Example:

If a change is made to, for example, an Information Model, such as altering the data structures
or simply renaming nodes, the Mapping where the Information Model is used is recompiled,
and the validation status is updated. In this case, an error is displayed with an error message
that indicates the problem. The error message is shown when hovering over the error icon.

Validation 142

../_images/GroupFilterShowAll.png
../_images/GroupFilterActiveFilter.png

SMARTUNIFIER User Manual, Release 1.10.0

Component Version Control

Component Version Control enables users to version SMARTUNIFIER configuration compo-
nents such as Information Models, Communication Channels, Mappings, Device Types and
Communication Instances.

By default, SMARTUNIFIER is using the Component Version Control internally - therefor no con-
figuration is needed. Another option is to point to an external version control system like Gitea.
In order to setup an external version control check out the SMARTUNIFIER Installation Guide.

How it works: SMARTUNIFIER creates a repository for each configuration component. Con-
figuration components can be released using tags which reference a specific point in the Git
history. After a tag has been created (equivalent to release of a configuration component) there
will be no further history of commits/changes. This means that the configuration component
can not be edited any further.

How to release configuration components

In order to release a configuration component follow the steps below:

1. Go to an edit page of a configuration component and click the release button.

1. Enter a version number.

2. Click Ok to confirm.

4. Open the version drop-down to change between latest and other tags.

Component Version Control 143

../_images/ExampleError.png
https://gitea.io/en-us/

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

Once a configuration component is released you can no longer edit the current tag. If
changes are necessary select latest. Once you finished editing the final version you can
repeat the release process as described above.

Operations

Add

The option to add/create a new component is described in the Instance Setup chapter, for
each component type:

• Information Models

• Communication Channels

• Mappings

• Device Types

• Instances

• Deployment

• Deployment Endpoints

Edit

Components can be edited by clicking the Edit button (1).

Apply

In edit mode, selecting the Apply button (1) is required to validate or compile new data input.

Operations 144

../_images/EditButton.png

SMARTUNIFIER User Manual, Release 1.10.0

Exit Editing

Edit mode can be exited by clicking the Close button (1).

If the data is unsaved, a pop-up will appear, offering the option to click the Cancel button (2) to
return to edit mode and save the data, or the Leave button (3) to exit without saving.

Save

In Edit Mode, changes can be saved by clicking the Save button (1) after the input data has been
applied.

A confirmation message appears (2).

Operations 145

../_images/ApplyButton.png
../_images/CloseButton.png
../_images/CloseConfirmation.png
../_images/SaveButton.png

SMARTUNIFIER User Manual, Release 1.10.0

Save and Close

After applying input data while editing a component, changes can be saved and edit mode
exited by clicking the Save and Close button (1).

A confirmation message appears (2), the edit mode is then closed.

Search

The Search option enables filtering of results according to multiple criteria, including:

• Name

• Version

• Description

The search is case-insensitive and operates as a partial search, displaying all results thatmatch
the searched characters.

To find a component, click the Search button (1) located in the upper right corner.

Operations 146

../_images/SaveConfirmation.png
../_images/SaveAndCloseButton.png
../_images/SaveExitConfirmation.png

SMARTUNIFIER User Manual, Release 1.10.0

Enter a search term (2).

To cancel the search click on the Close Search button (3).

Sort

The information in the view mode can be sorted ascending or descending for each column:

• Group

• Name

• Version

• Description

Click on the column header (1) to sort the information within a column. An arrow icon will show
whether the components are sorted in ascending or descending order.

In the table view, next to each component on the right, the following operations are available:

• Export

• Edit

• Delete

Operations 147

../_images/SearchButton.png
../_images/SearchPerformed.png
../_images/SearchCanceled.png
../_images/Sort.png

SMARTUNIFIER User Manual, Release 1.10.0

Reload

Selecting the Reload button (1) in the upper right corner refreshes the components from the
repository.

Import

This feature enables the addition of a newly created or exported component to the scenario.

To import an exported component, first open the JSON file and remove the component id (1);
upon import, the database will assign a universally unique identifier (uuid). Additionally, copy
(2) and paste (3) the version into the info section, as illustrated below.

Operations 148

../_images/ReloadButton.png

SMARTUNIFIER User Manual, Release 1.10.0

Operations 149

../_images/ImportEditArtefact1.png

SMARTUNIFIER User Manual, Release 1.10.0

To proceed with the import, click the Import button (4) located in the upper right corner.

Select the file (5) and then click the Open button (6).

Operations 150

../_images/ImportEditArtefact2.png
../_images/ImportButton.png

SMARTUNIFIER User Manual, Release 1.10.0

Now, the imported component appears in the list (7).

Export

To export a component, click the Export button (1).

Clone

In edit mode, a component can be cloned by selecting the Clone button (1).

Click on the Ok button (2).

Operations 151

../_images/ImportFile.png
../_images/ImportDone.png
../_images/ExportButton.png
../_images/CloneButton.png

SMARTUNIFIER User Manual, Release 1.10.0

The cloned component is then visible in edit mode, requiring a valid name to be input (3)

ò Note

The option to clone is unavailable for the Deployment component.

Delete

A component can be deleted by clicking the Delete button (1).

Select Delete (2).

The component is deleted and removed from the list.

Operations 152

../_images/Confirm.png
../_images/CloneEditName.png
../_images/Delete.png
../_images/DeleteConfirmation.png

SMARTUNIFIER User Manual, Release 1.10.0

Bulk Action

ò Note

This operation is available only for the Deployment.

The following bulk operations are available (1):

• Start

• Stop

• Deploy

• Undeploy

To begin, tick the boxes for specific Deployment Instances (2) or the box to select all (3).Then
click on the ellipsis menu button (4).

Choose a bulk operation; here, the selected instances should be deployed (5).

Operations 153

../_images/DeleteFromList.png
../_images/BulkOperations.png
../_images/BulkSelectDeployments.png

SMARTUNIFIER User Manual, Release 1.10.0

A status popup appears, displaying the following information:

• Performed action (6)

• The Instances included in the bulk action (7)

• The status of the action (8)

Click the Ok button (9) to close the popup.

When the selected Instances (10) are in different states (11), the bulk action (12)will only affect
Instances with the compatible states (13).

Operations 154

../_images/BulkDeploy.png
../_images/BulkActionStatus.png
../_images/BulkStart.png

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

Instances which are protected will not work using bulk actions.

Operations 155

../_images/BulkStartActionStatus.png

CHAPTER

FIVE

DEPLOYMENT

SMARTUNIFIER supports the deployment of Instances on several computing environments:

• Local - on the same environment the SMARTUNIFIER Manager is running on

• Agent Process - remote on any machine

Learn how to operate and monitor your SMARTUNIFIER Instances.

Learn about notifications.

Learn about additional deployment options.

Deployment Types

You can deploy your SMARTUNIFIER Communication Instances to any IT resource (e.g., Equip-
ment PC, Server, VM, Cloud) suitable to execute SMARTUNIFIER Instances. Please refer to the
installation guide for the system requirements. To see how an Instance is deployed, choose
one of the deployment types below:

156

SMARTUNIFIER User Manual, Release 1.10.0

Fig. 1: Overview over Deployment Types of SMARTUNIFIER Communication Instances

Local and Agent Deployment

SMARTUNIFIER Communication Instances can be deployed on the IT-resource where the
SMARTUNIFIER Manager is running on (e.g., a computer, a server or the AWS Cloud).

ò Hint

Before deploying a Communication Instance make sure to create and Start a Deployment
Endpoint. The Deployment Endpoint specifies the location where you want the Instance
to run. By default, the SMARTUNIFIER package already comes with a Local Deployment
Endpoint preconfigured.

Follow the steps described below in order to deploy a local/ agent Communication Instance:

• Select the SMARTUNIFIER Deployment perspective (1).

Deployment Types 157

../_images/DeploymentTypesOverview.png

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the Add Deployment button (2).

• Select the Deployment Type Local or Agent from the pop-up (3).

• In the Add Deployment view a set of configuration parameters is required (4)

– Select the SMARTUNIFIER Communication Instance to be used in the Deployment.

– Either select the Local Endpoint, or select the agent Endpoint ID created in the Agent
section from the Drop-Down menu.

– Select the log file level. We recommend the log level of type Info in case of a normal
deployment scenario.

– Select the Startup Type [Manual|Automatic|Disabled], Manual is set as default.

– (Optional) Enable Encryption.

– (Optional) Receive Notifications.

– (Optional) Add VM Arguments.

• When all mandatory fields are filled click the Save and Close button (5).

Deployment Types 158

SMARTUNIFIER User Manual, Release 1.10.0

When the Instance is deployed locally, it's configuration will be copied in the Deployment folder
defined in the Local Deployment Endpoint configuration.

ò Note

The Instance configuration folder can be copied to another location and started, but the
Instance will not be monitored by the SMARTUNIFIER Manager.

Deployment Endpoints

• Local: Deployment of a Communication Instance to your local computer where the
SMARTUNIFIER Manager is running on.

• Agent: Deployment of a Communication Instance remote on any machine.

How to Deploy, Run and Operate a Deployed Instance

How to Deploy an Instance

• In order to start the Instance, click first the "Deploy" button (1). A message is shown, that
confirms the successful deployment of the Instance.

How to Run an Instance

• After successfully deploying the Instance, the state changes from NotDeployed to
Stopped. You can now click the enabled "Start" button (2). The Instance state will change
to Started. A message is shown, that confirms the successful start of the Instance.

• Also the Communication state changes from Stopped to Started. If the Communication
state remains Stopped, please check the log files for errors.

How to Deploy, Run and Operate a Deployed Instance 159

../_images/ListViewDeploymentClickOnDeploy.png

SMARTUNIFIER User Manual, Release 1.10.0

How to Stop an Instance

• To stop the Instance, click the "Stop" button (3).

How to Delete a Deployment of an Instance

• Click on the "Delete" button to delete the Deployment (4). This is only possible if the
Instance state is NotDeployed.

How to Un-deploy an Instance

• To undeploy an instance, ensure that it is not running. If necessary stop the Instance.

• Click the "Undeploy" button (5).

• A popup appears. Uncheck box (6) to keep the log folder

• Then click the Yes button (7) to confirm.

How to Deploy, Run and Operate a Deployed Instance 160

../_images/ListViewDeploymentClickOnRun.png
../_images/ListViewDeploymentClickOnStop.png
../_images/ListViewDeploymentClickOnDelete.png
../_images/ListViewUndeployInstance.png

SMARTUNIFIER User Manual, Release 1.10.0

• The Instance state changes to NotDeployed (8) and the Deployment can be edited.

• If the Instance is in the NotDeployed state, changes can be made to the used Communi-
cation Channels in the Instance configuration. Be sure to deploy the Instance again after
making changes.

How to Edit a Deployment of an Instance

• Click on the "Edit" button to perform changes to the Deployment (9). It is only possible to
edit a Deployment if the Instance is not deployed. In case the Instance is deployed, only
the details of the Deployment can be viewed.

How to Redeploy a Deployment of an Instance

• Enable Debug mode with F9

• Click on the "Edit" button to perform changes to the Redeploy button (10)

ò Hint

When making changes to an instance's configuration, this method provides an easy way to
quickly redeploy the instance with the new settings.

How to Deploy, Run and Operate a Deployed Instance 161

../_images/ListViewUndeployInstanceConfirmation.png
../_images/ListViewUndeployInstanceDone.png
../_images/ListViewClickOnEdit.png

SMARTUNIFIER User Manual, Release 1.10.0

How to monitor Communication Instances

ò Note

Monitoring a Communication Instance is only possible after it has been deployed.

Log Viewer

SMARTUNIFIER includes an integrated Log Viewer, offering insights into deployed and opera-
tional Communication Instances.

Accessing the Log Viewer

To access the Log Viewer, follow these steps:

• Navigate to the Deployment view (1)

• Ensure the Instance is deployed and started (2)

• Click on the Log button (3)

• The Log Viewer displays logs for a deployed Communication Instance.

How to monitor Communication Instances 162

../_images/ListViewClickOnRedeploy.png
../_images/DeploymentClickOnLogViewer.png

SMARTUNIFIER User Manual, Release 1.10.0

Log Levels

The Log Viewer displays log details based on the level defined during the creation of the de-
ployment:

• TRACE - Provides the most detailed information, used only in rare cases for full visibility
into the operations of a Communication Instance

• DEBUG - Offers less detail than TRACE but more than what is typically needed in a pro-
duction environment. The DEBUG log level is suitable for troubleshooting issues with a
Communication Instance or for use in a test environment

• INFO - The standard log level for regular deployment of a Communication Instance, pro-
viding essential operational information

• WARNING - This log level signifies an unexpected occurrence within a Communication
Instance that may lead to issues in communication

Structure of a Log Entry

The following table shows the structure of a log entry for a communication instance using two
example log entries.

Timestamp Log
Level

Thread Class Description

2024-02-19
16:53:16,663

[INFO] [main] com.amorphsys.i40.adapter.MainInstance demo.csv-rest:SU In-
stance:__latest successfully started

2024-02-19
16:53:16,713

[ER-
ROR]

[unifier-
io-
thread-
0]

com.amorphsys.unifier.channel.layer.filetailer2string.FileTailerdemo.csv-rest:File:__latest - File
C:DemoFilesSampleData.csv does
not exist

How to monitor Communication Instances 163

../_images/DeploymentLogViewerMainView.png

SMARTUNIFIER User Manual, Release 1.10.0

Log Viewer Features

The Log Viewer offers several features for enhanced usability:

• Adjust Font - Use the slider to change the size of the log font (1)

• Filter - Apply a search using a regular expression (Regex) to find specific log entries (2)

• Scroll to End - Engage the Follow Tail feature to automatically display the most recent log
lines (3)

• Download Logs - Download the logs as a ZIP file onto your computer for further analysis
or sharing (4)

• Close - Exit the Log Viewer and go back to the Deployment perspective (5)

Dashboard

SMARTUNIFIER provides a Dashboard with an integrated Log Viewer, which helps to gain in-
sights in running Communication Instance performance.

How to access the Dashboard

Follow the steps bellow to access the Dashboard:

• Select the SMARTUNIFIER Deployment perspective (1)

• Make sure the Instance is Deployed (2)

• Click on the Dashboard button (3)

Dashboard's Data

The Dashboard presents a overview of an Instance, showcasing the following key information:

1. Information about Channels that are used in the Instance:

• Info - Name of the Communication Channel

• Type - Communication Channel Type

How to monitor Communication Instances 164

../_images/DeploymentLogViewer.png
../_images/ListViewClickOnDashboard.png

SMARTUNIFIER User Manual, Release 1.10.0

• Status - Current connection status of the Channel

• Model - Associated Information Model

• Messages - Number of messages last second / Number of messages last hour (e.g.
30/500)

ò Hint

The quantity of messages is determined by the Node Types used in the Information Model.
Each occurrence of an Event or Command is considered as a single message. On the other
hand, when it comes to variables, each individual variable is counted as a message, given
that it has been configured within the designated communication channel.

2. Integrated Log Viewer

3. Status of the Instance:

• Status - Shows if the Instance is currently started or stopped

• Communication - Shows the status of the Communication Channels Connected or
Stopped

• Start time - Shows the time when the Instance was started

• Time Up - Shows the duration or uptime of the instance

4. CPU Usage - Instance CPU usage in % and system CPU usage in %

5. Memory Usage - Instance Java memory heap usage in MB (megabyte)

ò Hint

Constant increase in the Java heap space memory might indicate memory leaks that re-
quires

How to monitor Communication Instances 165

../_images/DashboardCpuUsage.png

SMARTUNIFIER User Manual, Release 1.10.0

6. Messages / sec - Number of total messages of all Communication Channels within the
last second

Additional Options

Encryption of Communication Instances

This feature provides the possibility to encrypt the configuration files of Communication Chan-
nels used by the Instance, which may contain credentials to access a database or external
services. The encryption method used is Advanced Encryption Standard (AES).

The encryption is available for all deployment options, by following the steps bellow:

• Check the Enable Encryption box (1).

• A symmetrical key (cfg.key) is generated and can be saved in the same folder as the de-
ployment (2) or check the Custom Path option (3) to save the key into a secured location.

Protect Communication Instances

This feature provides an additional protection when performing an Instance action (e.g., deploy,
undeploy, start, stop).

The protection is available for all deployment options, by checking the Protected box (1).

Additional Options 166

../_images/InstanceStatusDashboard.png

SMARTUNIFIER User Manual, Release 1.10.0

Now the Instance is protected, meaning that when the user performs an action like Deploy (2),
a popup appears requiring to input the Instance name (3).

ò Note

Protected Instances will not work with Bulk actions.

VM Arguments

This feature provides the possibility to configure the Java Virtual Machine (JVM). In some
cases, when dealing with larger files when using the File Reader Communication Channel
(large XML file), it might be necessary to increase the XMX in order to avoid running into a
java.lang.OutOfMemoryError - exception.

VM Arguments can be configured when deploying an Communication Instance locally or on
Docker, by following the steps below:

• Check the JMX Properties box (1) to expand the Java Management Extensions parame-
ters and input the JMX Host Name and Port (2).

• Check the authentication method (3).

• Update the XMS value (4), minimal heap size, representing the amount of memory used
by the JVM to start with.

• Update the XMX value (5), maximal heap size, representing the maximum amount of
memory that JVM will be able to use.

Additional Options 167

SMARTUNIFIER User Manual, Release 1.10.0

• By default, the Heap Dump On Out Of Memory Error option is checked, providing an anal-
ysis file for debugging.

• Additional JVM arguments can be added by selecting the add Arg button (6) and input
the argument (7). For example, to debug memory issues or application performance, the
Garbage Collection logging can be enabled in JVM, as seen below.

• An additional argument can be deleted by clicking on the delete Arg button (8).

Notifications

SMARTUNIFIER comes with an integrated notification system, which helps to gain insights
when a deployed Communication Instance is started or running and errors appear.

Notifications 168

SMARTUNIFIER User Manual, Release 1.10.0

How to access Notifications

When a deployed Communication Instance is started or running and errors appear, the number
of errors will be displayed near the Notifications button (1).

Click on theNotifications button and theNotifications List (2)will display all the Instance errors.

Select a notification (3) from the list and the Dashboard (4) will appear and display additional
information.

How to manage Notifications

In order to manage the notifications click on the Notifications button (1) and select the View
All Notifications option (2).

Notifications 169

SMARTUNIFIER User Manual, Release 1.10.0

The Notifications Manager displays all the notifications. Select all (3) or specific notifications
(4).

After selection a pop-up appears providing two options.

Click on the Dismiss button (5) to remove the selected notifications from the Notifications List.
The selected notifications will still be available in the Notifications Manager.

To remove the selected notifications from the Notifications List and the Manager, click on the
Delete button (6).

Notifications 170

CHAPTER

SIX

ADMINISTRATION

Learn how to:

• Integrate an Active Directory

• Backup and Restore the Repository

• Manage Communication Channel Types

• Manage Docker Java Images

• Create Deployment Endpoints

• Manage Credentials

• Manage User Accounts

• Manage Logging Configurations

• Create Alerts

• Manage Alert Channels

• Use Extensions

• Use Environment Variables

• Validate the Configuration Components

Active Directory Integration (ADI)

SMARTUNIFIER supports Windows Active Directory (AD). System administrators can use the
Active Directory to add/remove users, groups, and resources quickly and efficiently through one
dashboard.

171

SMARTUNIFIER User Manual, Release 1.10.0

AD Group Mapping

An user from AD must be added to a group that acts as a role. The role determines what per-
missions are assigned to the user.

The mapping between the AD groups and the SMARTUNIFIER roles is defined in the applica-
tion.conf file from the conf folder.

Active Directory Integration (ADI) 172

SMARTUNIFIER User Manual, Release 1.10.0

Active Directory Integration (ADI) 173

SMARTUNIFIER User Manual, Release 1.10.0

As seen above (1) in the left side are the SMARTUNIFIER roles and in the right side, between
the quotation marks are the AD groups.

The SMARTUNIFIER roles are predefined:

• Administrator - global permission

• Writer - limited permission, write and read access

• Reader - limited permission, read access

A user from an AD group will have permission based on the mapping of the AD group to a
predefined SMARTUNIFIER role.

After all the above configuration is done, the user can login to the SMARTUNIFIERwith the User
logon name and the Password defined in AD.

Alert Channels

Within the Alert Channels, the user can configure and manage the channels for sending alert
notifications (e.g., send via email an alert for Instance errors).

How to access

Follow the steps bellow to access the Alert Channels:

• Click on the Account icon (1), go to Administrative section (2) and select the Alert Chan-
nels option (3).

Alert Channels 174

SMARTUNIFIER User Manual, Release 1.10.0

• The Alert Channels section is visible.

ò Note

The Alert Channels can only be accessed by user accounts with an administrator role as-
signed.

Alert Channels 175

SMARTUNIFIER User Manual, Release 1.10.0

Add an Email Channel

Follow the steps described below to add an Email channel:

• Click on the Add button (1).

• Select the Email option (2).

• Type a name for the Group (3).

• Input the email channel name (4).

• Add description (5).

• Click to check the Enabled box (6).

• Provide the Host name (7).

• Type the host Port (8).

• Input the Username and Password (9).

• Provide the Sender email address (10).

• Click on the Add button (11) to input the Recipients email addresses (12).

• Click on the Save and Close button (13).

Alert Channels 176

SMARTUNIFIER User Manual, Release 1.10.0

Edit Alert Channels

To edit an alert channel, select the Edit button (1).

The Edit Mode is visible, the configuration can be edited (2) and then save the session by se-
lecting the Save and Close button (3).

Delete Alert Channels

To delete an alert channel, select the Delete button (1).

A pop-up confirmation appears, select the Delete button (2).

Alerts Configuration

Within this section, the user can configure and manage alerts.

Alerts can be sent for:

• Instance errors

• Instance Deployment status changed

Alerts Configuration 177

SMARTUNIFIER User Manual, Release 1.10.0

• Endpoint Client status changed

How to access

Follow the steps bellow to access the Alerts Configuration:

• Click on the Account icon (1), go to Administrative section (2) and select the Alerts Con-
figuration option (3).

• The Alerts Configuration is visible.

Alerts Configuration 178

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

The Alerts Configuration can only be accessed by user accounts with an administrator role
assigned.

Add Alerts

Follow the steps described below to add an alert:

• Click on the Add button (1).

• Type a name for Group (2).

• Input the alert name (3).

• Add description (4).

• Check the box for Enabled (5).

• Select the Notification Type (6).

• Input the regex filter (7).

• Click on the Add button (8) to select the alert channel (9).

• Click on the Save and Close button (10).

Alerts Configuration 179

SMARTUNIFIER User Manual, Release 1.10.0

Edit Alerts

To edit an alert, select the Edit button (1).

The Edit Mode is visible, the configuration can be edited (2) and then save the session by se-
lecting the Save and Close button (3).

Delete Alerts

To delete an alert, select the Delete button (1).

A pop-up confirmation appears, select the Delete button (2).

Backup and Restore

SMARTUNIFIER provides the possibility to manually backup and restore the repository and the
internal database.

The repository represents a central location in which all the configuration components are
stored:

• Information Models

• Communication Channels

• Mappings

Backup and Restore 180

SMARTUNIFIER User Manual, Release 1.10.0

• Device Types

• Communication Instances

The internal database is used for the operation of the SMARTUNIFIER Manager and stores
information like:

• User Accounts and Credentials

• Deployment Endpoints

• Base Images

• Channel Types

• Alert Configurations and Channels

How to access

To access the Backup or the Restore option, click on the Account icon (1), go to the Adminis-
trative option (2) and select Backup (3) or Restore (4).

ò Note

The Backup and the Restore features can only be accessed by user accounts with an admin-
istrator role assigned. Also keep in mind that the same SMARTUNIFIER Manager version
must be used.

Backup

The Backup feature provides the possibility to create a copy of the configuration components
to store elsewhere, so that it can be used to restore the last used after a data loss event occurs.

Follow the steps described below to create a backup of the repository:

• Select the Account icon (1), go to the Administrative section (2) and select the Backup
option (3).

Backup and Restore 181

SMARTUNIFIER User Manual, Release 1.10.0

• The configuration components (Repository) are visible. Check the boxes (4) to select
what to backup or check the top box (5) to select all.

• If the selected component has dependencies or dependents, click on the three dots and
select either one (6) to select or deselect all.

ò Note

Press Ctrl + left Mouse Click to select/deselect all dependencies.

ò Note

Press Ctrl + Shift + left Mouse Click to select/deselect all dependents.

Backup and Restore 182

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the Database tab, check the top box to select all (7) or select the desired tables
for backup. It is also possible to deselect some tables (8).

• After the desired components are selected, click on the Backup button (9). Click on the
Yes button (10) to confirm.

Backup and Restore 183

SMARTUNIFIER User Manual, Release 1.10.0

Restore

The Restore feature allows you to recover SMARTUNIFIER configuration components from a
backup and apply them to your current SMARTUNIFIER Manager. This feature is particularly
useful to share configuration components across several SMARTUNIFIER Manager installa-
tions or when you encounter unexpected issues and need to revert back to a previous state.

ò Note

When restoring, the existing configuration components will be overwritten by with the se-
lected configuration components from the backup if the name match!

ò Note

Before restoring, ensure that you undeploy all communication instances.

Follow the steps described below to restore the SMARTUNIFIER repository:

• Select the Account icon (1), go to the Administrative section (2) and select the Restore
option (3).

• A pop-up appears, choose the TAR file to restore (4) and select the Yes button (5) to
confirm.

• The backup configuration components (Repository) are visible.

Backup and Restore 184

SMARTUNIFIER User Manual, Release 1.10.0

• If needed, check the box (6) to delete all existing components, before restoring.

• Check the boxes (7) to select what to restore or check the top box (8) to select all. Do the
same for Database tab (9) if needed.

• If a component from the current configuration (if any) has the same name as one from
the backup, it will be overwritten.

• If the selected component has dependencies or dependents, click on the three dots (10)
and select either one (11) to select or deselect all.

ò Note

Press Ctrl + left Mouse Click to select/deselect all dependencies.

ò Note

Press Ctrl + Shift + left Mouse Click to select/deselect all dependents.

• After the desired components are selected, click on the Restore button (12).

• The configuration components are uploading and all existing data will be overwritten!

• The uploading progress is displayed, including errors, if any.

Backup and Restore 185

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the Close button to finish.

Manager Backup

In order to backup SMARTUNIFIER Manager make a copy of the SMARTUNIFIER installation
package.

Before the backup make sure to remove the following directories:

• temp

• workspace

• log

• deploy

Channel Types Manager

By default, the Channel Types Manager displays all Channels included in your current version
of SMARTUNIFIER.

Communication Channels that should be used within the configuration of a SMARTUNIFIER
Communication Instance have to exist in the Channel TypesManager. How to add newChannel
Types is shown in the section below.

Channel Types Manager 186

SMARTUNIFIER User Manual, Release 1.10.0

How to access

Follow the steps bellow to access the Channel Types Manager:

• Click on the Account icon (1) and select the Advanced UI (2).

• Click on the Channel Types button (3) to open the Channel Types perspective.

• The main view of the Channel Types is visible.

Channel Types Manager 187

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

The Channel Types Manager can only be accessed by user accounts with an administrator
role assigned.

About Layers

Implementations of SMARTUNIFIER Communication Channels consist of one and up to three
so-called layers.

The target of layers is to transform data from Information Models into the respective data for-
mat of the specific protocol used in case the data traffic is outgoing from a SMARTUNIFIER
Communication Instance. The same principle applies when data is incoming.

As an example for such a layer stack you can see below the layer stack for the MQTT Commu-
nication Channel:

• Data that is incoming from a Device is transformed into a String behind the scene.

• The String is then converted into a JSON Object.

• Finally, the JSON is used to assign data to the assigned Information Model.

How to create a new Channel Type

Follow the steps below to create a new Channel Type:

1. Open the SMARTUNIFIER menu and select Advanced UI.

Channel Types Manager 188

SMARTUNIFIER User Manual, Release 1.10.0

2. Go to the Channel Types perspective by clicking the Channel Types button.

3. Click on the Add button in the upper right corner.

Channel Types Manager 189

SMARTUNIFIER User Manual, Release 1.10.0

4. Enter some descriptive information:

• Enter a group

• Enter the name of the Channel

• Enter a version

5. Next, define the layer stack of the new Channel Type:

• Select a layer with the Layer type drop-down menu.

• In case the selected layer has more layers dependent on itself, select again another
layer with the Layer type drop-down menu showing up below.

6. To save the Communication Channel Type select the Save button.

Configuration Components Validation

SMARTUNIFIER provides the possibility to validate configuration components (artifacts) that
are created. This is especially important when restoring a backup from an older version of a
SMARTUNIFIER Manager installation.

How to access

To access the Artifact Validation option, click on the Account icon (1), go to the Administrative
option (2) and select the Artifact Validation perspective (3).

Configuration Components Validation 190

SMARTUNIFIER User Manual, Release 1.10.0

The Artifact Validation perspective is visible, displaying all the configuration components.

Press F8 from the keyboard to open the Artifact Validation Results view (4).

Configuration Components Validation 191

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

TheArtifact Validation features canonly be accessed by user accountswith an administrator
role assigned.

How to Validate Artifacts

Follow the steps described below to validate artifacts:

• From the Artifact Validation perspective select the desired artifacts (1)

• If dependencies are found, a pop-up will appear. Click on the Yes button (2) to select the
dependencies

• Click on the Validate button (3)

• Make sure the Artifact Validation Results view is opened and click on the Show valid
button (4) to see the results (5)

• If an artifact is valid, the Status column will show a green valid icon

• If an artifact is NOT valid, the Status column will show a red X icon and the Error column
will provide details

Configuration Components Validation 192

SMARTUNIFIER User Manual, Release 1.10.0

• To delete the validation results, click on the Clear button (6)

Credential Management

Within the Credential Manager the user can store and manage the credentials needed for the
Communication Channel configuration (e.g., password for certificates, username and pass-
word for SQL Server).

How to access

Follow the steps bellow to access the Credential Management:

• Click on the Account icon (1), go to Administrative section (2) and select the Credential
Management option (3).

Credential Management 193

SMARTUNIFIER User Manual, Release 1.10.0

• The Credential Management is visible.

Credential Management 194

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

The Credential Management can only be accessed by user accounts with an administrator
role assigned.

Add Credentials

Follow the steps described below to add credentials:

• Click on the Add button (1).

• Select an option (2) Password or Username and Password.

• Type a name for Credentials (3).

• Add description (4) (optional).

• Input the Username and Password (5).

• Click on the Save and Close button (6).

Credential Management 195

SMARTUNIFIER User Manual, Release 1.10.0

Add Token

Follow the steps described below to add a token:

• Click on the Add button (1).

• Select the Token option (2).

• Type a name for the Token (3).

• Add description (4) (optional).

• Input the Token (5).

• Click on the Save and Close button (6).

Edit Credentials

To edit the credentials, select the Edit button (1).

The Edit Mode is visible, the configuration can be edited (2) and then save the session by se-
lecting the Save and Close button (3).

Credential Management 196

SMARTUNIFIER User Manual, Release 1.10.0

Delete Credentials

To delete credentials, select the Delete button (1).

A pop-up confirmation appears, select the Delete button (2).

Using Credential Manager when configuring the Communication Channels

When configuring the Communication Channels, the user has the option to manually input the
credentials or to select one from the Credential Manager.

Example of SQL Database Communication Channel configuration:

• Click on the Database credentials field (1).

• Select the Username and password credentials reference option (2).

Credential Management 197

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the Credentials Manager Selector option (3).

• Select one of the credentials from the list (4).

• If the credentials are not saved in the Credentials Manager, click on the Add credentials
option (5).

Credential Management 198

SMARTUNIFIER User Manual, Release 1.10.0

• Input the credentials details (6) and click on the Save and Close button (7).

• The new credentials are saved and added into the configuration (8).

When configuring the Communication Channels, the user has the option to manually input a
token or to select one from the Credential Manager.

Example of InfluxDB V2 Communication Channel configuration:

• For the Token field, select the Token credentials reference option (1).

Credential Management 199

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the Credential Manager Selector field (2).

• Select a Token from the list (3).

• If the token is not saved in the Credentials Manager, click on the Add credentials option
(4), input the token details and save it.

• The new token is saved and added into the configuration (5).

Docker Java Image Manager

SMARTUNIFIER supports the Deployment of Instances using Docker Containers using different
Java base images. With the Docker Java Images Manager, the user can create and maintain
different versions of Docker Java images.

This feature can only be accessed by a user with the administrator role.

Docker Java Image Manager 200

SMARTUNIFIER User Manual, Release 1.10.0

How to access

Follow the steps bellow to access the Docker Java Image Manager:

• Click on the Account icon (1), go to Administrative section (2) and select the Docker Java
Image Manager option (3).

• The Docker Java Image Manager is visible.

Docker Java Image Manager 201

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

The Docker Java Image Manager can only be accessed by user accounts with an adminis-
trator role assigned.

Add a New Docker Java Image

Follow the steps described below to add a new Docker Java image:

• Click on the Add button (1).

• In the Add Docker Java Image view, a set of configuration parameters is required (2): *
Provide aGroup and aName * Provide a tag e.g., adoptopenjdk/openjdk8:jdk8u202-b08

• After all mandatory fields are filled in, click the Save button (3).

Edit a Docker Java Image

To edit a Docker Java image, select the Edit button (1).

The Docker Java image is in the Edit Mode, the configuration parameters can be edited and
then save the session by selecting the Save button.

Docker Java Image Manager 202

SMARTUNIFIER User Manual, Release 1.10.0

Delete a Docker Java Image

To delete a Docker Java image, select the Delete button (1).

A pop-up confirmation appears, select the Delete button.

Deployment Endpoints

What are Deployment Endpoints

Deployment Endpoints are used to identify the location of a Deployment (i.e., the definition
where an Instance is executed). With the Deployment Endpoints, you can create and maintain
those locations. This feature can only be accessed by a user with the administrator role.

How to access

Follow the steps bellow to access the Deployment Endpoints:

• Click on theDeployment Endpoints button (1) to open the Deployment Endpoints perspec-
tive.

• The main view of the Deployment Endpoints is visible.

Deployment Endpoints 203

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

The Deployment Endpoints can only be accessed by user accounts with an administrator
role assigned.

Deployment Endpoints Types

Local

SMARTUNIFIER supports Endpoint for Local Deployment. A Default Local Endpoint is precon-
figured.

Follow the steps described below to create a Local Deployment Endpoint:

• Navigate to the SMARTUNIFIER Deployment Endpoints perspective (1).

• Click on the Add Endpoint button (2).

• Select the Deployment Type Local from the pop-up (3).

• In the Add Endpoint view a set of configuration parameters is required (4)

– Provide a Group and a Name

– Input the path for Java

– Provide the Deployment Folder

– Configure the Soft/Hard Refresh Interval and the Log Status Interval (in millisec-
onds)

– Enable Monitor Logs (optionally)

• After all mandatory fields are filled in, click the Save button (5).

Deployment Endpoints 204

SMARTUNIFIER User Manual, Release 1.10.0

Agent

SMARTUNIFIER allowsCommunication Instances to be deployed on anymachinewith an active
Agent process. The Agent enables communication between the SMARTUNIFIER Manager and
the Communication Instance.

Installation as a Windows Service

Follow the steps below to install and operate SMARTUNIFIER Agent as a Service under Win-
dows:

• Move the SMARTUNIFIER Agent package to a suitable location

• Extract the .zip-archive

• Open a terminal window with Administrator privileges within the package

• Execute the following commands in the terminal window to:

Listing 1: Install

SmartUnifierAgentService.bat install

Listing 2: Start

SmartUnifierAgentService.bat start

Listing 3: Stop

SmartUnifierAgentService.bat stop

Listing 4: Uninstall

SmartUnifierAgentService.bat uninstall

Installation as a Java Process

Follow the steps below to install and operate SMARTUNIFIER Agent as a Process under Win-
dows:

• Move the SMARTUNIFIER Agent package to a suitable location

• Extract the .zip-archive

• Execute the SmartUnifierAgent.bat script

ò Note

The console is for information purposes only. It can be moved to any suitable location on
your screen or it can be hidden. Nevertheless, do not close it, because the related processes
will also be terminated.

Deployment Endpoints 205

SMARTUNIFIER User Manual, Release 1.10.0

Fig. 1: Example of an Agent running on a remote machine

Creating a Deployment Endpoint

After installing the agent, you need to register the endpoint with the SMARTUNIFIER Manager.
Follow the steps below to create the deployment endpoint:

• Navigate to the SMARTUNIFIER Deployment Endpoints perspective (1).

• Click on the Add Endpoint button (2).

• Select the Deployment Type Agent from the pop-up (3).

• In the Add Endpoint view a set of configuration parameters is required (4)

– Provide a Group and a Name

Deployment Endpoints 206

SMARTUNIFIER User Manual, Release 1.10.0

– Provide the VM Hostname (Default port is: 8080)

– Set the Connection Timeout

– If needed, check the useTls box and input certificates for secured connections

– Set the Log Status Interval

– Enable the Monitor Logs

• After all mandatory fields are filled in, click the Save and Close button (5).

Deployment Endpoints States

A Deployment Endpoint can have the following states:

• Stopped - The Stop command has been sent and the Deployment Endpoint is
stopped

• Starting - The Start command has been sent

• Running - Deployment Endpoint is up and running

• Failure - The Start command has been sent and the Deployment Endpoint has failed
to start

For the Failure state, hover over it (1) and a pop-up will display the error (2).

Deployment Endpoints 207

SMARTUNIFIER User Manual, Release 1.10.0

Deployment Endpoints Operations

Start Endpoint

After a Deployment Endpoint is created, its default state is Stopped. To start it, click on theStart
button (1). The state will change into Starting and if it succeeds, the state becomes Running
(2).

If theDeployment Endpoint fails to start, the state changes into Failure (3) and an errormessage
will be displayed (4).

Click on the OK button (5) to close the error message.

Stop Endpoint

To stop a Deployment Endpoint, click on the Stop button (1) and the state will change accord-
ingly (2).

Delete Endpoint

To remove a Deployment Endpoint, click on the Delete button (1) and confirm the action (2).

Edit Endpoint

To edit a Deployment Endpoint, click on the Edit button (1).

Deployment Endpoints 208

SMARTUNIFIER User Manual, Release 1.10.0

In the Deployment Endpoint edit view update the configuration (2) and click on the Save button
(3).

Environment Variables

Environment Variables can be used within the Channel configuration to store values that can
be used across multiple Channels. This allows you to define a value once and use it in multiple
places, making it easier to manage and update values across multiple Channels.

How to access

1. Click on the Account icon on the top right corner of the screen.

2. Select Administrative

3. Select Environment Variables

Environment Variables 209

SMARTUNIFIER User Manual, Release 1.10.0

Adding an Environment Variable

1. Click on the Add button

Environment Variables 210

../_images/AccessEnvironmentVariables.png
../_images/AddingNewEnvironmentVariable1.png

SMARTUNIFIER User Manual, Release 1.10.0

2. Enter a Name for the Environment Variable

3. Select the Data Type of the Environment Variable from the drop-down list

4. Entert the Value of the Environment Variable

5. Click on the Save button

Using Environment Variables

To use an Environment Variable in the Channel configuration, use the following syntax:
$ENV[<Name of the Environment Variable>].

Example:

Extensions

ò Note

Please contact Amorph Systems for guidance on how to enable and use extensions.

How to install extensions

Request the specific plugin from Amorph Systems. Follow the steps below to install it:

1. Navigate to ..SmartUnifierManager/plugins

2. Create a new directory with the name of the plugin in this format:

• SmartUnifierPluginJsonToModel

• SmartUnifierPluginAwsSiteWise or

• SmartUnifierPluginOpcUaToModel

Extensions 211

../_images/AddingNewEnvironmentVariable2.png
../_images/UsingEnvironmentVariables.png

SMARTUNIFIER User Manual, Release 1.10.0

3. Add the jar into the specified directory

4. Restart the SMARTUNIFIER Manager

OpcUa Model Import

SMARTUNIFIER provides the possibility to generate an OpcUa Information Model using a XML-
file or connecting to the OpcUa server.

Create a new Information Model (OPCUA)

Follow the steps described below to generate an Information Model:

• Select the SMARTUNIFIER Information Model Perspective (1).

• Click on the Extensions button (2).

• Select the OpcUa model generator: ADD option (3).

OpcUa Nodeset XML Import

• Select the UA Nodeset XML Import option (4).

• Provide the following mandatory information: Group and Name (5).

• Select the type of the Information Model Node and provide a Name (6) :

– Model - the OpcUa data is converted inside the root model node

– Event - the OpcUa data is converted inside an Event node type

– Variable - the OpcUa data is converted inside a Variable node type

• Paste the content from the XML file (7).

• To finish, click on the Save Button (8).

Extensions 212

SMARTUNIFIER User Manual, Release 1.10.0

• The Information Model is generated.

OpcUa Direct Import

• Select the OpcUa Import option (4).

• Provide the following mandatory information: Group and Name (5).

• Input the Namespace Index (6).

• Click on the Add identifier name button and provide an Identifier Name (7).

• Provide the server details (8):

– Security Policy

– IP address

– TCP port

– Endpoint path

• To finish, click on the Save Button (9).

Extensions 213

SMARTUNIFIER User Manual, Release 1.10.0

• The Information Model is generated.

Update an existing Information Model (OPCUA)

Follow the steps described below to update an Information Model:

• Open an Information Model to edit and click on the Extensions button (1).

• Select the OpcUa model generator: UPDATE option (2).

OpcUa Nodeset XML Import (Update)

• Select the UA Nodeset XML Import option (3).

• Update the Type and the Name (4).

• Paste the updated content from a XML-file (5).

Extensions 214

SMARTUNIFIER User Manual, Release 1.10.0

• To finish, click on the Save button (6).

OpcUa Direct Import (Update)

• Select the OpcUa Import option (3).

• Input the Namespace Index (4).

• Click on the Add identifier name button and provide an Identifier Name (5).

• Provide the server details (6):

– Security Policy

– IP address

– TCP port

– Endpoint path

• To finish, click on the Save Button (7).

Extensions 215

SMARTUNIFIER User Manual, Release 1.10.0

JSON Model Import

SMARTUNIFIER provides the possibility to generate an Information Model using a JSON-file.

Create a new Information Model (JSON)

Follow the steps described below to generate an Information Model:

• Select the SMARTUNIFIER Information Model Perspective (1).

• Click on the Extensions button (2).

• Select the Json model generator: ADD option (3).

• Provide the following mandatory information: Group and Name (4).

• Click on the Add item button (5).

Extensions 216

SMARTUNIFIER User Manual, Release 1.10.0

• Select the type of the Information Model Node (6):

– Model - the Json data is converted inside the root model node

– Event - the Json data is converted inside an Event node type

– Variable - the Json data is converted inside a Variable node type

– Command - the Json data is converted inside a Command node type

• Enter a Name (7).

• Paste the content from a Json file (8).

ò Note

Make sure to copy the JSON object { }.

• To finish, click on the Save Button (9).

Extensions 217

SMARTUNIFIER User Manual, Release 1.10.0

• The Information Model is generated.

Update an existing Information Model (JSON)

Follow the steps described below to update an Information Model:

• Open an Information Model to edit and click on the Extensions button (1).

• Select the Json model generator: UPDATE option (2).

Extensions 218

SMARTUNIFIER User Manual, Release 1.10.0

• Click on the Add item button (3).

• Update the Type (4) and the Name (5).

• Paste the updated content from a Json-file (6).

• To finish, click on the Save button (7).

AWS IoT SiteWise Model Export

This extension allows you to export an SMARTUNIFIER InformationModel to AWS IoT SiteWise.

How to access

To access the AWS IoT SiteWise extension, click on the Account icon (1), go to the Administra-
tive option (2) and select the Extensions (3).

Extensions 219

SMARTUNIFIER User Manual, Release 1.10.0

Then select the configuration button of the (4)

How to export Information to AWS IoT SiteWise

Prerequisite

We recommend to have one user dedicated for SMARTUNIFIER.

Attach the following permission:

Policy ARN Description

arn:aws:iam::aws:policy/AWSIoTSiteWiseFullAccess Provides full access to IoT
SiteWise.

If you do not have already an access key available you have to create a new access key. We
recommend to create a new access key after 90 days.

Configuration

Follow the steps described below to export a the SMARTUNIFIER Information Model:

• Configuration of the extension (1):

– Select the region of the AWS Iot SiteWise service you are using

– Enter the access key id and the secret access key id

– Select the Information Model you want to export

• Click on the Run button to execute the export (2)

Extensions 220

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

SMARTUNIFIER User Manual, Release 1.10.0

Logging Configurations

Log files within SMARTUNIFIER are created through the Logback logging framework. The Log-
ging Configuration functionality allows for the creation of new log level configurations. The
configuration can be used during the deployment of a Communication Instance.

Accessing the Feature

To access the feature, follow the steps below:

• Click on the Account icon (1)

• Navigate to the Administrative option (2)

• Select the Logging Configurations perspective (3)

When you reach the Logging Configurations main view, you will see it as depicted below. There
are four predefined log level configurations available, which can serve as templates for creating
a new log level.

Logging Configurations 221

https://logback.qos.ch/
../_images/AccessLoggingConfigurations.png

SMARTUNIFIER User Manual, Release 1.10.0

ò Note

This feature can be only used by users with the administration role.

ò Note

The predefined logging configurations cannot be edited or deleted.

Add a New Logging Configuration

To add a new logging configuration, follow the steps below:

• Navigate to the Logging Configurations perspective

• Click on the "Add" button (2)

• Enter the file Name (3) and the configuration details (4)

• Click on the Save and Close button to finish (5)

Logging Configurations 222

../_images/LoggingConfigurationsMainView.png
../_images/LoggingConfigurationsClickOnAdd.png
../_images/LoggingConfigurationsAddView.png

SMARTUNIFIER User Manual, Release 1.10.0

Edit a Logging Configuration

To edit a logging configuration, follow the steps below:

• Navigate to the Logging Configurations perspective

• Click on the "Edit" button (2)

• Edit and click on the Save and Close button to finish (3)

Delete a Logging Configuration

To delete a logging configuration, follow the steps below:

• Navigate to the Logging Configurations perspective

• Click on the "Delete" button (2)

• To confirm, click on the Delete button (3)

Logging Configurations 223

../_images/LoggingConfigurationsClickOnEdit.png
../_images/LoggingConfigurationsEditView.png
../_images/LoggingConfigurationsClickOnDelete.png
../_images/LoggingConfigurationsClickOnDeleteToConfirm.png

SMARTUNIFIER User Manual, Release 1.10.0

User Management

About User Management

Within the User Management the administrator can create users accounts, assign permissions
as well as activate or deactivate user accounts.

User Roles and Permissions

This table outlines the permissions and capabilities available to different roles within
SMARTUNIFIER, segmented into general features and tasks.

User Management 224

SMARTUNIFIER User Manual, Release 1.10.0

Feature Reader Writer Administrator

View Information
Models

X X X

Add/Edit Information
Models

- X X

View Communica-
tion Channels

X X X

Add/Edit Communi-
cation Channels

- X X

View Mappings X X X
Add/Edit Mappings - X X
View Device Types X X X
Add/Edit Device
Types

- X X

View Communica-
tion Instances

X X X

Add/Edit Communi-
cation Instances

- X X

View Deployments X X X
Add/Edit Deploy-
ments

- X X

Add/Edit Deploy-
ment Endpoints

- X X

Clear Cache - X X
Add/Edit Channel
Types (Advanced UI)

- X X

User Management - - X
Extensions - - X
Credential Manage-
ment

- - X

Docker Java Image
Manager

- - X

Logging Configura-
tions

- - X

Translation Manager
(Debug Mode)

- - X

Backup - - X
Restore - - X
Artifact Validation - - X
Re-index Repository - - X
Alert Channels - - X
Alert Configuration - - X
Environmental Vari-
ables

- - X

User Management 225

SMARTUNIFIER User Manual, Release 1.10.0

How to access

Follow the steps bellow to access the User Management:

• Click on the Account icon (1), go to the Administrative option (2) and select the User
Management perspective (3).

• The User Management main view is visible.

ò Note

The User Management can only be accessed by user accounts with an administrator role
assigned.

Add a new user

This procedure describes how to create a new user account.

• Select the SMARTUNIFIER User Management perspective (1).

User Management 226

SMARTUNIFIER User Manual, Release 1.10.0

• Click the "Add User" button (2).

• In the "Add User" view provide the following information (3):

– Provide a user id, first and last name

– Optionally, provide an e-mail address

– Set a preferred language for the SMARTUNIFIER Manager.

• The role defines the permission of the user. It is mandatory to assign a role for the user.
The following roles are available for use in the SMARTUNIFIER.

– Administrator: Full read and write access for the SMARTUNIFIER Configuration and
Administration.

– Reader: Only read access for the SMARTUNIFIER Configuration

– Writer: Read and write access for the SMARTUNIFIER Configuration

• Choose the account status: Active or Inactive.

– Active: User account is activated and ready to use.

– Inactive: User account is deactivated and cannot be used until it is activated again.

• Set an initial password for the first login of the new user.

• After all mandatory fields are filled in, click the "Save" button (4).

User Management 227

SMARTUNIFIER User Manual, Release 1.10.0

Edit a user

This procedure describes how to edit an existing user account.

• Select the SMARTUNIFIER User Management perspective (1).

• Click the "Edit" button (2).

In the "Edit" view the user account can be redefined (3).

• update the user details: user id, first and last name, email address

• change the language

• edit the user permission: Administrator, Writer or Reader

• activate or inactivate the user account

User Management 228

SMARTUNIFIER User Manual, Release 1.10.0

• change the password

• After editing, click the "Save" button (4).

Delete a user

This procedure describes how to delete a user account.

• Select the SMARTUNIFIER User Management perspective (1).

• Click the "Delete" button (2).

Confirm by selecting the "Delete" button (3).

User Management 229

SMARTUNIFIER User Manual, Release 1.10.0

The user account is deleted and no more visible in the SMARTUNIFIER User Management per-
spective.

User Management 230

CHAPTER

SEVEN

GETTING HELP

Having trouble? We would like to help!

• In case of malfunctioning SU Instances check out the Troubleshooting section

• Try the FAQ - it’s got answers to regularly asked questions

• Check out the Glossary if some terminology is not clear

Troubleshooting

Communication Instances

Determine if there is an issue with the deployment environment (VM, Cloud, other Hardware)
where the Communication Instance is operated on.

• In case of a HW problem setup a new HW (or switch to a spare HW). Ensure to place
the correct security certificates on the new HW. Perform a new deployment of a new SU
Instance with SU Manager on the new HW.

• In case, the HW is operating correctly navigate to the log file of the deployed instance
./SmartUnifierManager/deploy/<deployment-id> and check for error messages.

– If there is a configuration issue which can be fixed:

* Undeploy the Communication Instance

* Fix the configuration issue accordingly

* Deploy and start the Communication Instance

– If there is a configuration issue which can not be fixed save the log files and contact
Amorph Systems through the Support Portal for further assistance

231

https://amorphsys.atlassian.net/servicedesk/customer/portals

SMARTUNIFIER User Manual, Release 1.10.0

Troubleshooting 232

SMARTUNIFIER User Manual, Release 1.10.0

SMARTUNIFIER Manager

Determine if it is a HW problem on the HW where SMARTUNIFIER Manager is operated.

• In case of a HW problem, setup a new HW or switch to a spare HW. Perform installation
of SU Manager and Repository from latest backup and re-start the Manager on the new
HW.

• In case HW is operating correctly stop and restart the Manager

• If the Manager is still not running correctly:

– Create a Backup

– Perform a complete uninstall of the Manager

– Install theManagerwith the Repository from the latest backup and start theManager

• If the Manager is still not working navigate to ./SmartUnifierManager/log and save the
log files (debug.log and info.log) and contact Amorph Systems through the Support Portal
for further assistance

Troubleshooting 233

https://amorphsys.atlassian.net/servicedesk/customer/portals

SMARTUNIFIER User Manual, Release 1.10.0

Troubleshooting 234

SMARTUNIFIER User Manual, Release 1.10.0

FAQ

Does SMARTUNIFIER provide caching/buffering of data?

Yes, SMARTUNIFIER is capable of supporting caching of messages using file buffer (Spool)
for message transfer to external middleware like MQTT. This functionality can be provided as
part of a SMARTUNIFIER Communication Channel and dependent on the used communication
protocol of the respective channel.

Is it possible to set different buffering options for different channels?

Yes, each communication channel of SMARTUNIFIER can provide a different buffer size and
further options.

Does SMARTUNIFIER enable data pre-processing, cleansing, filtering and optimization of
data?

Yes, this is a core feature of SMARTUNIFIER. SMARTUNIFIER provides powerful capabilities
for any kind data preprocessing, cleansing, filtering and optimization. The capabilities of
SMARTUNIFIER in this respect range from simple calculations, unit conversions, type conver-
sions and reformatting up to arbitrary processing algorithms of any complexity.

Does SMARTUNIFIER enable data aggregation?

Yes, SMARTUNIFIER enables data aggregation and reformatting with any level of complexity.

Does SMARTUNIFIER provide short term data historian features?

Yes, historic telemetric data (of variable time horizons; size limited by used HW) can be mon-
itored by usage of SMARTUNIFIER's logs which can record all communication activities of a
SMARTUNIFIER Instance incl. telemetric data. SMARTUNIFIER's Log data can afterwards be
forwarded by usage of a dedicated Communication Channel to any (and also multiple) upper-
level monitoring or analytics system. Alternatively SMARTUNIFIER's Logs can be accessed
directly by any external IT application (remote access to HW device is required).

Yes, SMARTUNIFIER can create any number of OPC-UA Servers and/or Clients within just one
Communication Instance.

Does SMARTUNIFIER support standard number of connections to OPC-UA Clients?

Yes, SMARTUNIFIER supports a virtually unlimited number of client connections per OPC-UA
Server. Physically the number of connections is limited by number of subscriptions per session,
number of data objects and size per subscription as well as by HW and network constraints.
SMARTUNIFIER allows to operate multiple OPC-UA Servers and/or OPC-UA Clients within each
single SMARTUNIFIER instance for northbound and/or southbound communication.

Does SMARTUNIFIER support brokering to MQTT Server?

Yes, SMARTUNIFIER supports any number of MQTT connections. One single SMARTUNIFIER
Instance can connect to one or multiple MQTT brokers (e.g., for different target systems) and
is able to communicate bi-directional.

FAQ 235

SMARTUNIFIER User Manual, Release 1.10.0

Which southbound protocols are offered with SMARTUNIFIER?

SMARTUNIFIER supports many protocols like e.g.,

• Siemens S7, S7-2

• OPC-UA

• Beckhoff

• MQTT

• Modbus-TCP

• file-based (different formats like CSV, XML, JSON, any binary format)

• SQL

...andmanymore to come continuously. Specific protocols can be provided based on customer
request. Therefore please contact Amorph Systems (www.amorphsys.com).

Does SMARTUNIFIER enable pre-aggregation of additional sensor data and/or more devices
(rule based), for e.g., temperature monitoring?

Yes, SMARTUNIFIER allows to connect any number of telemetric data sources to a
SMARTUNIFIER Instance. Rule-based pre-aggregation and pre-processing of additional sensor
data is supported with any level of complexity. This ranges from simple pre aggregation/pre-
processing up to complex utilization of advanced AI or ML algorithms.

Does SMARTUNIFIER support processing of active cloud commands? (e.g., System Manager
AWS / AWS Agent)

Yes, SMARTUNIFIER provides a RESTful API to execute Shell Commands (e.g., Start/Stop In-
stance, etc.). Thus, active cloud commands are supported. In addition, also commands from
other external IT-Systems (e.g., MES, ERP, AWS Systems Manager etc.) are possible. Further-
more if required SMARTUNIFIER can be fully executed and operated within Cloud Environments
(e.g., within AWS Cloud).

Which northbound protocols are supported by SMARTUNIFIER?

SMARTUNIFIER supports many northbound protocols, like e.g.,

• OPC-UA

• MQTT

• WebSphere

• HTTP / REST

• any file based protocol

• SQL/any database

• Splunk

• Vantiq

...andmanymore to come continuously. Specific protocols can be provided based on customer
request. Therefore, please contact Amorph Systems (www.amorphsys.com).

FAQ 236

SMARTUNIFIER User Manual, Release 1.10.0

Does SMARTUNIFIER support international naming standards (example: EUROMAP 77,
PackML)?

Yes, SMARTUNIFIER is specifically designed to strongly support the incorporation of interna-
tional standards (e.g., EUROMAP 77, 82, 83, 84, AutomationML, PackML, DFQ, SEMI SECS/GEM
etc.) as well as company standards, by offering the capability to be able to build up specific
SMARTUNIFIER Information Models complying with these standards and incorporating full
data semantics. Therewill be a one-time effort to implement such a standard in SMARTUNIFIER
as a respective Information Model and afterwards this Standard can be used for any commu-
nication across the whole customer IT Infrastructure. Also this includes flexible mapping from
legacy protocols to new standard protocol and vice versa.

DoesSMARTUNIFIER offer the ability to integratewith other systems and applications through
REST Server APIs and Web Services for Operational purpose?

Yes, SMARTUNIFIER features a REST API for operational purpose (e.g., instance start/stop ser-
vice, configuration etc.)

Does SMARTUNIFIER offer a way to realize a flexible, configurable dataflow?

Yes, SMARTUNIFIER features a configurable and highly performant rule-based engine
(SmartMappings) based on different northbound and/or southbound input sources for real-
izing any dataflow (workflow) that is required in industrial environments. This covers commu-
nication sequences for identification, processing start, processing execution, processing end,
results data pro-vision as well as detailed process data provision. Also commands from any
upper-level IT-System can be processed and further transmitted to the production equipment
(e.g., recipe management, NC program transfer etc.) External data flow engines / visualization
apps (e.g., Node-Red, Grafana) can be connected.

Does SMARTUNIFIER enable Central Software Management?

Yes, all Information Models, Mappings and Deployment Features can be managed centrally.
Furthermore, SMARTUNIFIER features an easy to use REST API for operational purpose (e.g.,
instance start/stop service, configuration etc.).

Does SMARTUNIFIER enable Container Deployment?

Yes, SMARTUNIFIER operation and deployment is fully based on Container-Technology
(Docker). SMARTUNIFIERManager and Instances can be operated and deployed inside Docker
Containers to any End Point within the network running Docker environment.

Which Operating System SMARTUNIFIER is supporting?

SMARTUNIFIER runs on Windows, Linux, Mac and other OS supporting Java RT and Docker.

Does SMARTUNIFIER support onPrem Edge-Analytics?

Yes, SMARTUNIFIER can be connected to any Edge-Analytics SystemSMARTUNIFIER Logs can
provide detailed information about all communication activities. These log data can either be
provided by a dedicated Communication Channel to any upper level Analytics System (in any
required format) or can be made locally accessible to any agent running locally on the HW.

FAQ 237

SMARTUNIFIER User Manual, Release 1.10.0

Does SMARTUNIFIER support DevOps CI/CD Pipeline for installations and update?

Yes, SMARTUNIFIER supports remote installation/update of Software from SMARTUNIFIER
Manager via Docker Registry SMARTUNIFIER Instances (running in Docker Containers) can be
updated, monitored and controlled remotely. Docker registry is also accessible from external
systems if required.

Does SMARTUNIFIER enable Software Scalability?

Yes, SMARTUNIFIER can scale from connection of one single equipment/device to virtually any
number of equipment/devices by means of its decentralized architecture.

Does SMARTUNIFIER support the architecture of distributed systems?

Yes, SMARTUNIFIER itself is a fully distributed and scalable IT system. With this architecture
SMARTUNIFIER is able to collaborate in any small or large IT environment. SMARTUNIFIER is
open to reliably collaborate in large sites.

Does SMARTUNIFIER provide the ability to directly communicate with other Devices or IT-
Systems through standard protocols and also supports Load-Balancing?

Yes, SMARTUNIFIER can communicate with any other Devices or IT-Systems and also address
load balancers for optimized feeding of data to any message brokers or data forwarder.

Does SMARTUNIFIER provide the ability for data to be ingested as a consolidated batch (File
Transfer)?

Yes, SMARTUNIFIER can use any file in any format as input source and also as output destina-
tion.

Does SMARTUNIFIER provide the ability to create custom connectors to ingest data from ar-
bitrary sources?

Yes, the capability to be able to realize custom connectors for any data source is one of the
core elements of SMARTUNIFIER's architecture.

Is SMARTUNIFIER able to push operational data to an Edge-Gateway?

Yes, SMARTUNIFIER can receive operational data from any device or IT-System and push it to
an Edge-GW. E.g., OPC-UA, MQTT and HTTP/REST are supported. Also, many other protocols
can be used therefore.

Does SMARTUNIFIER provide Software Monitoring?

Yes, each SMARTUNIFIER Instance creates detailed logs that document every communication
activity. These logs can be made accessible to any external system e.g., by a dedicated moni-
toring communication channel. Moreover, SMARTUNIFIERManager comes with a built-in Mon-
itoring Dashboard that allows monitoring of the distributed SMARTUNIFIER Instances.

Does SMARTUNIFIER support Monitoring integration?

Yes, this is possible; Each SMARTUNIFIER Instance creates detailed logs that document every
communication activity. These logs can be made accessible to any external system e.g., by a
dedicated monitoring communication channel. In addition, SMARTUNIFIER is able to send any

FAQ 238

SMARTUNIFIER User Manual, Release 1.10.0

kind ofmonitoringmessage (e.g., based on status changes or other events (e.g., time triggered)
to any (or multiple) upper level monitoring system in any required format.

Does SMARTUNIFIER provide certificate handling?

Yes, SMARTUNIFIER can handle certificates and establish state-of-the-art secured connections
(e.g., TLS, secured MQTT, secured OPC-UA, etc.).

Is it possible with SMARTUNIFIER to limit access to data?

Yes, SMARTUNIFIER Instanceswork on independentWindows/Linux computer units. Datamay
be stored temporarily on these HW devices as logs or for buffer (cache) purposes. This tempo-
rary data can be protected by assigning the HW with appropriate access rights and user roles.

Does SMARTUNIFIER support services for security supervision and security monitoring?

Yes, SMARTUNIFIER creates detailed logs regarding all communication activities (and other
activities) it performs. With SMARTUNIFIER it is possible to integrate with any external secu-
rity supervision/monitoring system (e.g., Splunk) and provide on-line log files (in any required
format) to these systems by usage of a dedicated monitoring communication channel.

Does SMARTUNIFIER support End-to-End transport encryption (to Northbound and South-
bound)?

Yes, SMARTUNIFIER can support End-to-End transport encryption for southbound and north-
bound communication channels.

Does SMARTUNIFIER enforce secure individual authentication for all users?

Yes, SMARTUNIFIER supports individual user authentication.

Does SMARTUNIFIER support Windows Active Directory (AD)?

Yes, SMARTUNIFIER supports Windows Active Directory.

Does SMARTUNIFIER support a (configurable) secure remote access?

Yes, Secure remote access to SMARTUNIFIER Manager and SMARTUNIFIER Instances is pos-
sible by standard Windows or Linux tools (e.g., SSH).

Can SMARTUNIFIER protect unsecured Shop Floor devices from office network through iso-
lation?

Yes, a SMARTUNIFIER Instance can be deployed locally near an equipment/device and map
any unsecured equipment/device interface into a secured protocol (e.g., OPC-UA, MQTT). This
way "unsecured data streams" coming from an equipment/device can be transferred to any
northbound system in a secured way (isolation of the equipment/device). The same principle
can be also applied when sending control parameters (e.g., screwer params, NC programs,
recipes, ...) or commands from a northbound system to the equipment/device.

FAQ 239

SMARTUNIFIER User Manual, Release 1.10.0

Does SMARTUNIFIER support malware protection concepts (e.g., support of standard Anti-
Virus Software)?

Yes, SMARTUNIFIERworks with any standard malware protection software incl. McAffee, NOD
and many others.

Is SMARTUNIFIER secure by design (e.g., secure coding guidelines, use of open source code,
pentesting)?

SMARTUNIFIER was developed according to state-of-the-art coding principles and on request
we are willing to let perform any checks, verifications, pen testing as required to validate the
software. Especially for realizing communication channels and implementing protocols, state-
of-the-art Open Source Libraries are used and constantly updated to the newest versions avail-
able.

Does SMARTUNIFIER support a range of transmission/infrastructure protocols (e.g.,
IPV4/IPv6)?

Yes, with SMARTUNIFIER (depending on used HW) IP4/IP6 are supported.

• LAN: Up to 4x Gbit Ethernet Intel i211

• Wireless LAN: 802.11ac dual antenna + BT 4.2

• Cellular communication: LTE/WCDMA/GSM/GNSS

USB: Up to 8 ports, 2x USB 3.0, Up to 6x USB 2.0

• RS232 serial port

Also other transmission/infrastructure protocols can be supported on request but may require
additional HW.

Does SMARTUNIFIER provide the ability to handle intermittent connectivity of sources
(data/event redelivery and failure modes)?

Yes, intermittent connectivity of sources can be handled by SMARTUNIFIER Communication
Channels. Based on rules, data/event redelivery can take place, failure modes can be activated,
and escalation procedures to northbound systems can be triggered.

Does SMARTUNIFIER reduce unnecessary traffic on shop floor network to protect device in-
terfaces from traffic overload?

Yes, a SMARTUNIFIER instance can be deployed locally nearby the equipment on any suitable
HW device. The SMARTUNIFIER instance can then be configured to communicate to the con-
nected southbound equipment/devices by using a separate physical network port and this way
isolate the device from unnecessary traffic coming from the northbound network.

Does SMARTUNIFIER support low Latency between Southbound and Northbound Interfaces?

Yes, SMARTUNIFIER provides high performance / low latency by its distributed architecture
consisting out of small SMARTUNIFIER Instances (i.e., no central bottlenecks like e.g., a mid-
dleware broker/database). Furthermore, SMARTUNIFIER features an integrated compiler that
creates native Bytecode for the interfaces to be executed within the SMARTUNIFIER Instances.
This makes the SMARTUNIFIER highly performant, since no slow scripting language nor any
slow interpreter is used to provide the connectivity functionality.

FAQ 240

SMARTUNIFIER User Manual, Release 1.10.0

Is it possible with SMARTUNIFIER to ensure a consistent setting of time stamps for events
(NTP)?

Yes, this is possible.

Is it possible to use UNICODE for operational data?

Yes, it is possible to use UNICODE with SMARTUNIFIER (e.g., for OPC-UA).

Is stability of SMARTUNIFIER s API given? Is the API stable across releases?

Yes, SMARTUNIFIER is a standard product from Amorph Systems. Interface stability is given
and stable across new product releases. Furthermore, interfaces are versioned and under con-
trolled release management (i.e., different versions of interface, Information, Models and Map-
pings can be maintained and deployed in a controlled mode).

Which tools for development, deployment and error analysis can be usedwith SMARTUNIFIER
?

For extension, deployment and error analysis of SMARTUNIFIER (e.g., development of new In-
formation Models, pre-processing, aggregation etc.) widely-used and accepted state-of-the-art
development environments and powerful standard tools may be used, e.g., Eclipse, Maven/sbt,
Jenkins, Docker. For Error Analyses detailed logs created by SMARTUNIFIER can be used and
analysed with any analytics tools.

What is the cost model of SMARTUNIFIER ?

Please refer to Amorph Systems (www.amorphsys.com) for prices for SMARTUNIFIER . In gen-
eral, the following policies apply:

• SMARTUNIFIER Manager is free of charge

• For SMARTUNIFIER Instances a yearly license fee is charged

Does Amorph Systems offer reliable support for SMARTUNIFIER ?

For many years, Amorph Systems is providing first class support and intensive care to all of its
customers. This covers all products and solutions that were delivered and operated in Industrial
Areas aswell as in Air Traffic Industry. For customer references please refer to Amorph Systems
(www.amorphsys.com).

What support levels (SLAs) are supported?

Different levels of services (8x5, 8x7 up to 24x7) are available upon request from Amorph Sys-
tems (www.amorphsys.com).

Does SMARTUNIFIER support multiple languages?

Yes, SMARTUNIFIER can support multiple languages. Currently the GUI is available in English
and German language. In case more languages are required, please contact Amorph Systems
(www.amorphsys.com)

FAQ 241

SMARTUNIFIER User Manual, Release 1.10.0

DoesAmorph Systems provide relevant training capabilities for operating SMARTUNIFIER and
for engineering of Information Models and Mappings?

Yes, SMARTUNIFIER is a simple to use standard product and was specifically designed as a
powerful tool to enable the end customers themselves to provide seamless equipment/device
as well as IT-Systems interconnectivity within their industrial environments.

Therefore, Amorph Systems trains customers to configure, deploy and operate SMARTUNIFIER
in their environments. Moreover, we can give advanced trainings, so that the customers can
also implement new interfaces, new channels, new, Information Models and new Mappings on
their own.

Glossary

Arrays
An Array (as an Information Model Node Type) is a container object that holds a fixed
number of values of a single type.

Configuration Components
Configuration Components are Information Models, Communication Channels, Map-
pings, Device Type and Communication Instances, used to realize an integration scenario.

Commands
Commands (as an Information Model Node Type) are functions like the methods of a
class in object-oriented programming. The scope of a Command is bounded to the Infor-
mation Model it belongs.

Communication Channels
Communication Channels or simply Channels, refer to a transmission medium. A Chan-
nel is used to convey information from one or several senders (or transmitters). Commu-
nicating data from one location to another requires some form of pathway or medium.
These pathways are called Communication Channels, and the information is transmit-
ted with the help of communication protocols. Each Information Model has one or many
Channels, and each Information Model can choose which Channel it subscribes to. The
information is transmitted through the Communication Channels in both directions: from
the external system to the SMARTUNIFIER application and vice versa.

Custom Types
Custom Data types are defined by the user for a Node Type.

Data Types
Each Node Type has a Data Type. Data Types can be either a Simple Type or a Custom
Type - depending on the Node Type.

Deployments
With the SMARTUNIFIER Deployment capability Instances can be deployed to any IT re-
source (e.g., Equipment PC, Server, Cloud) suitable to execute a SMARTUNIFIER Instance.

Deployment Endpoints
Deployment Endpoints are used to identify the location of a Deployment (e.g., AWS Far-
gate, Docker)

Device Types
Device Type contains one or multiple Mappings. Each Mapping contains one or
multiple Information Models and its associated Communication Channel. Within a
SMARTUNIFIER Device Type it is possible to overwrite existing Communication Channel

Glossary 242

SMARTUNIFIER User Manual, Release 1.10.0

configurations. Device Types are especially important, when having to connect several
similar equipment or devices that share the same communication parameters. In these
cases it is sufficient to define only one Device Type and the settings of this Device Type
can be reused across all Instances.

Events
Events (as an Information Model Node Type) represent an action or occurrence recog-
nized by SMARTUNIFIER, often originating asynchronously from an external data source
(e.g., equipment, device). Computer events can be generated or triggered by external IT
systems (e.g., received via a Communication Channel), by the SMARTUNIFIER itself (e.g.,
timer event) or in other ways (e.g., time triggered event).

File Consumer
This Communication Channels offers the capability to read-in files (e.g., CSV, XML, and
JSON). The File Consumer monitors an input folder that is specified in the configuration.

File Tailer
This Communication Channels offers the capability to read-in files (e.g., CSV, XML, and
JSON). The File Tailer monitors a specific file, which is specified in the configuration.

InfluxDB
This Channel offers connectivity to an InfluxDB. InfluxDB is an open-source time series
database.

Information Models
Information Model describes the communication related data, which is available for a
device or IT system. Each device or IT system is represented by an Information Model.

Instances
An Instance represents an application that handles the connectivity. Instances can be
deployed to any suitable IT resource (e.g., Equipment PC, Server, Cloud), and provide the
connectivity functionality configured. Therefore, a SMARTUNIFIER Instance uses one or
multiple Mappings and selected Communication Channels from a previously defined De-
vice Type.

Lists
A List (as an Information Model Node Type) representing collections of Node Types (e.g.,
Variables, Properties, Arrays, and other Lists).

Mappings
Mapping represents the SMARTUNIFIER component that is defining when and how to
exchange/transform data between two or multiple Information Models. In other words it
is acting as a translator between the different InformationModels. OneMapping consists
of one or multiple Rules.

MQTT
This Communication Channel offers the capability to send data using the messaging pro-
tocolMQTT.MQTT is a lightweight publish/subscribemessaging transport for connecting
remote devices with minimal network bandwidth.

Node Types
Node Types are elements within an Information Model. Node Types are Variables, Prop-
erties, Events, Commands and also collections such as Arrays and Lists. Each Node Type
has a Data Type that defines if the Node Type is a predefined Data Type or a custom Data
Type.

Glossary 243

SMARTUNIFIER User Manual, Release 1.10.0

OPC-UA
Is a machine to machine communication protocol for industrial automation.

Predefined Types
Predefined Data Types (e.g., String, Integer, Double, etc.) are available for the definition
types - Variables, Properties, Arrays, Lists (e.g., String, Integer, Boolean).

Properties
Properties (as an Information Model Node Type) are used to represent XML attributes.

REST Client
This Communication Channels offers the capability to consume and operate with re-
sources exposed by REST Servers.

REST Server
This Communication Channels offers the capability to provide resources employing the
HTTP communication protocol.

Rules
ARule contains a Trigger that defineswhen the exchange/transformation takes place and
a list of actions that are defining how the exchange/transformation is done.

Manager
The Web application SMARTUNIFIER Manager is used to create and monitor
SMARTUNIFIER Instances.

Source
In the Mapping sources are Node Types that are mapped to targets.

SQL DB
This Communication Channel offers the capability to connect to a SQL Databases (e.g.,
MariaDB, SQLServer, PostgreSQL, ORACLE, HSQLDB, and DB2).

Target
In the Mapping targets are Node Types that receive data assigned from a source.

Trigger
The Trigger defines when the exchange/transformation data between two or multiple In-
formation Models takes place.

User Management
User Management allows the administrator to create users accounts, to assign permis-
sions as well as to activate or to deactivate the user accounts.

Variables
Variables in an Information Model represent data values and structures.

What has changed in 1.9.x

ò Hint

Deployment options like AWS, Docker, and SSH are removed from the standard product and
available upon request. Please contact Amorph Systems for more details.

What has changed in 1.9.x 244

SMARTUNIFIER User Manual, Release 1.10.0

1.9.8

Bug fixes

• Rest client config is not shown when the name of the variable is
BODY,HEADER,PARAMETERS or STATUSCODE

Added

• InfluxDB v1: Added support for reading from influx database

1.9.7

Bug Fixes

• Sql Database: Fix database connection not cleaned up after disconnect

1.9.6

Bug Fixes

• Updated dependencies to fix version conflict in used libraries

1.9.5

Changed

• Sql Database: More granular connections settings for poolsize, timout, ...

1.9.4

Added

• Rest Client: Added support for additional OAUTH2 type

• Rest Server: Server can now use certificates stored in the Windows certificate store

Changed

• Endpoint don't needs to be stopped before doing restore

Improvements

• Backups can be downloaded as zip files

1.9.3

Added

• EMail: Added option to use outgoing server without any security

Changed

• Max logging to 180 days

1.9.2

Added

• Saving mappings without compiling

Bug Fixes

What has changed in 1.9.x 245

SMARTUNIFIER User Manual, Release 1.10.0

• Rest Client: Fixed configuration for selecting HTTP-Version

1.9.1

Added

• Rest Client: Support for OUTH2.0 added

• Rest Client: Support for body type "text" added

• Rest Server: Support for body type "text" added

Improvements

• Possibility to select which entries of the database to backup / restore.

• Added confirmation prompts for artifact deletion and reindexing.

• Visual distinction of complex and simple variables in Model editor / view

• Documentation updates: Expanded guides for backup, Oracle drivers, and more.

• OPC-UA client: Improved logging

• MQTT layers: Improved logging

Bug Fixes

• Restoring of deployments not working

• Incorrect state of an agent deployment endpoint shown in gui

• Creation of environment variables not working

• OPC UA Client: Fixed subscription group "None" not recognized

1.9.0

Added

• Validation for the SMARTUNIFIER configuration component.

• Environment variables to store common configurations across multiple Communication
Channels.

• New mapping trigger type "Timeout Scheduler".

• Implicit data type conversion within mappings via drag-and-drop.

• Mapping helpers such as equals, formatDateTime, parseDateTime, mapAndAssignChil-
dren for easier rule creation.

Improvements

• Introduced "Communication Status" to indicate the status of communication between
channels.

• Updated MQTT Communication Channel to allow subscriptions on complex variables.

• Updated SMARTUNIFIER Manager Interface framework to Angular 16.

• Improved logging in Communication Channels tomake it easier to react to certain events.

• Multiple improvements to enhance the stability of the SMARTUNIFIERManager and Com-
munication Instances.

What has changed in 1.9.x 246

SMARTUNIFIER User Manual, Release 1.10.0

Bug Fixes

• Reconnect issue in InfluxDB Communication Channel after connection loss.

• Connection state issue in OPC UA Client Communication Channel.

• Absence of notification when the Information Model compile fails.

What has changed in 1.8.x

Added

• Added: Deployment Agent that allows to deploy and monitor SMARTUNIFIER Communi-
cation Instances remotely.

• Added: Downloading feature to get the logs of an SMARTUNIFIER Communication In-
stance via the Deployment view.

• Added: Alert feature, enabling users to monitor running Communication Instances and
create customizable alerts to receive notifications in case of errors.

• Added: Validation feature has been added to check the validity of configuration compo-
nents such as Information Models, Communication Channels, Mappings, Device Types,
and Communication Instances, providing assurance that the they are free from faults and
errors.

• Added: New Communication Channels (Email, InfluxDB V2).

Improvements

• The Credential Manager now has the ability to manage tokens in addition to other creden-
tials.

• To ensure all Communication Instances are properly started after a backup, an automatic
restart feature has been implemented for Instances that were started prior to the backup.

• A more robust logging framework has been introduced, resulting in improved perfor-
mance across the system.

• Visually enhanced dashboard charts for CPU usage, RAM usage, and messages per sec-
ond to provide an improved overall appearance.

Bug Fixes

• Fixed: Data type handling in the Information Model JSON-Import plugin.

• Fixed: Issue affecting the WebSocket channel's reconnection behavior has been fixed.

• Fixed: Enabled editing of action timeout in SecsGem Channel.

• Fixed: Arrow key logic in Information Model view.

What has changed in 1.7.x

1.7.0

Added

• Added: OPC-UAmodel import - provides the possibility to generate an OpcUa Information
Model using a XML-file or connecting to the OpcUa server.

What has changed in 1.8.x 247

SMARTUNIFIER User Manual, Release 1.10.0

Improvements

• Introduced actions with conditions within the Mapping Rule configuration.

• Added option for multi trigger Rule within the Mapping configuration. Simple one to one
Mapping of variables.

• Added option to enable consumer/producer for the variable node within the MQTT Com-
munication Channel configuration.

• Extended local deployment to flexibly choose the location of the Instance deployment on
your system by adding local endpoints.

• Introduced Deployment states within the Deployment Instance operations.

• Improved Modbus implementation.

• Added tracing support for SECS implementation.

Bug Fixes

• Fixed: Variables under event duplicated when dragging in an action from the tree within
Mapping.

• Fixed: Deploying of an Instance parsed the Mapping code.

• Fixed: Error while creating AWS Deployment Endpoint.

• Fixed: Log and status of Instances not working on SSH Deployments.

• Fixed: Temp folder is not cleaned up after restoring a backup.

• Fixed: REST client authentication issue.

• Fixed: Notification issues.

What has changed in 1.6.x

1.6.0

Added

• Added: New trigger types for Rules within the Mapping - Fixed Rate Scheduler and Fixed
Delay Scheduler.

• Added: Simple Mapping option for data structures of the same type.

• Added: SSH Deployment that allows to deploy Communication Instances in different net-
works.

• Added: Notifications allow another way of monitoring deployed and running Communica-
tion Instances states.

• Added: The new SiteWise model export extension makes an integration with AWS IoT
SiteWise more easy.

• Added: The newJSONmodel import extension that allows you to create InformationMod-
els automatically based on a given JSON structure.

Improvements

What has changed in 1.6.x 248

https://docs.amorph.pro/SmartUnifierUserManual/1.6.0/instance-setup/mapping/rule_grafical.html#fixed-rate-scheduler
https://docs.amorph.pro/SmartUnifierUserManual/1.6.0/instance-setup/mapping/rule_grafical.html#fixed-delay-scheduler
https://docs.amorph.pro/SmartUnifierUserManual/1.6.0/instance-setup/mapping/rule_grafical.html#fixed-delay-scheduler
https://docs.amorph.pro/SmartUnifierUserManual/1.6.0/instance-setup/mapping/rule_combinations.html#simple
https://docs.amorph.pro/SmartUnifierUserManual/1.6.0/deployment/ssh.html?#deploy-with-ssh
https://docs.amorph.pro/SmartUnifierUserManual/1.6.0/deployment/notifications.html?#notifications

SMARTUNIFIER User Manual, Release 1.10.0

• Introduced configuration field within the Communication Channel configuration to define
deviating or unsupported Information Model node naming (e.g., avoid naming conflicts
with Scala keywords).

• Added option TailFromEnd to the File Tailer Communication Channel.

• Implemented List support for Command Replies.

• You can backup the internal database of the SMARTUNIFIER Manager.

• Improved Dashboard for the monitoring of deployed and running Instances.

• Changed AWS account authentication from profile file to input fields for Access key id
and Secret access key.

Bug Fixes

• Fixed: Deletion of Information Model custom nodes.

• Fixed: Type conversion issues with Milo unsigned types in the OPCUA Communication
Channel.

• Fixed: Deadlock issue in the SECS/GEM Communication Channel.

• Fixed: Communication Instances show now the correct state when using a backup of a
repository.

• Fixed: UI issue during the offline activation when entering a new license.

What has changed in 1.5.x

Added

• Mappings: Introduced rule scheduler as another trigger option.

• Communication Instance: Added the option to choose the version of the frameworkwhich
the Communication Instance is using to allows backwards compatibility.

• Deployments: Added bulk actions to deploy, start, stop and delete multiple selected De-
ployments.

• Deployments: Added VM Arguments to configure the Java Virtual Machine (JVM) for the
Communication Instance.

• Deployments - Docker: Introduced possibility to attach volumes to Docker containers.

• Administration - Logging Configuration: Allows to generate customized log4j configura-
tions that can be used when deploying Communication Instances.

Improvements

• Administration - Restore: Introduced progress bar with log viewer for monitoring the
restoring process of the repository.

• Communication Channels - REST Client: Introduced option to use parameters within the
URL.

• Communication Channels - InfluxDB: Introduced support for Arrays.

Bug Fixes

• Information Models: Children nodes can have now the same name as their parent nodes.

What has changed in 1.5.x 249

SMARTUNIFIER User Manual, Release 1.10.0

• Administration - SCM (Gitea): Fixed issue of failing API requests when organizations are
missing within Gitea.

What has changed in 1.4.x

1.4.0

Added

• Deployments: Introduced log viewer to show logs of deployed SMARTUNIFIER Commu-
nication Instances.

• Deployments: Introduced flag "protected" for deployed SMARTUNIFIER Communication
Instances - requires a password to apply state changes on deployed Instances.

• Deployment Endpoint - Docker: Added TLS to protect the Docker daemon socket.

Improvements

• Manager: Introduced local Git repository to version SMARTUNIFIER Communication In-
stances by default. The use of an Gitea repository can be configured optionally.

Bug Fixes

• Communication Channels - SECS: Not reconnecting when first attempt fails.

• Communication Channels - MQTT: Layer connection state not set correctly.

• Manager UI: Fixed Dashboard refreshing issue when Communication Instance changes
from Stopped to Started.

What has changed in 1.3.x

1.3.0

Added

• Manager UI: Introduced backup and restore functionality for the SMARTUNIFIER reposi-
tory.

• Manager UI: Introduced Docker Java Image Manager to support the administration of
Docker images for containerized deployments of Communication Instances.

• Manager UI: Introduced clone functionality for configuration components that allows to
easily reuse components like Information Models, Communication Channels, Mappings,
Device Types, Communication Instances as well as Deployment Endpoints.

• Manager UI: "About SMARTUNIFIER" Pop-up

• Deployments: Added option to encrypt Communication Instances so that configuration
files with sensitive data are secured.

• User Administration: Added support for Windows Active Directory (AD).

• Demonstrator: Added demo guide for high-availability (HA) use cases using a load bal-
ancer before two or more SMARTUNIFIER Communication Instances.

Improvements

What has changed in 1.4.x 250

SMARTUNIFIER User Manual, Release 1.10.0

• Manager UI: Introduced additional "save & close" button for configuration pages to exit
the configuration faster.

Bug Fixes

• Communication Channels: Fixed configuration issues on following Communication Chan-
nels: REST Client, MQTT and File Reader (JSON, XML, and CSV).

• Communication Channel - SQL Database: Added support for multiple nested lists inside
an Information Model.

• Manager UI (macOS): Fixed deployed and started Communication Instance state - Af-
ter restarting the SMARTUNIFIERManager the running Communication Instance was not
displayed as running.

What has changed in 1.2.x

1.2.0

ò Important

Breaking Change: This release contains a major update of the SMARTUNIFIER Framework.
Instances configured in an older release will not work with this version. Please contact
Amorph Systems for guidance on how to migrate SMARTUNIFIER Instances from previous
releases.

Improvements

• Improved architecture performance and stability by updating the framework to Scala ver-
sion 2.13 and Java version 11.

• Communication Channels: Improved configuration of Communication Channels by en-
hancing the internal process of how the configuration forms are generated.

• Manager UI: Introduced new icons for several menu entries (Information Model, Map-
pings, Device Type, Instance, Deployment, Deploy and Undeploy) to improve usability.

Bug Fixes

• Manager UI: Fixed small UI styling issues.

• Communication Channel - IsoOnTCPClient: Fixed configuration issue.

• Mapping: Added check to make sure that the Rule name is valid.

What has changed in 1.1.x

1.1.6

Added

• Security Improvement: Encryption of credentials.

• Communication Channel: Simplified Communication Channels configuration using pre-
configured Channel Types.

Bug Fixes

What has changed in 1.2.x 251

SMARTUNIFIER User Manual, Release 1.10.0

• Information Model: Removed Simple Type as data type for Events and Commands.

• Information Model: Ensure that "Save" button is only enabled when all mandatory fields
are filled.

• Communication Channel: OPC-UA Client configuration issues.

• Communication Channel: File Consumer file handling when error occurs in the communi-
cation.

• Communication Channel: MQTT layer reconnects when no disconnect buffer is used.

• Device Type: Enable the configuration of the Communication Channels before saving the
new Device Type.

• Instance: Fixed Instance starting issue.

1.1.5

Added

• Import/Export functionality for SMARTUNIFIER Artifacts (Information Models, Commu-
nication Channels, Mappings, Device Types, Instances, Deployment Endpoints, Deploy-
ments) to allow transfer of artifacts in a simplified way.

• Communication Channel: Source code editor that displays the Channel configuration in
JSON format.

• Security: Encryption of databases.

Improvements

• Communication Channel - SQL Databases: Handling of infinity values.

Bug Fixes

• Deployment: Fixed configurable refresh on deployment page.

1.1.4

Added

• Mapping: Option to enable/disable rules.

• Communication Channel - InfluxDB: Added Tags and allowing the renaming of variables
via configuration.

• Communication Channel - SECS: Added SECS as a new Communication Channel type.

• Deployment - AWS: Introduced deployment of Instances on AWS using Fargate.

Improvements

• Manager UI: Updated to Angular version 11 to improve performance and usability.

Bug Fixes

• Framework: Paths that are containing the SMARTUNIFIER Manager are now allowed to
have spaces in it.

• Information Model: Fixed Copy and Paste issues of Nodes in the model editor.

• Communication Channel - SQL Database: Supports now all kinds of connection paths.

What has changed in 1.1.x 252

SMARTUNIFIER User Manual, Release 1.10.0

• Device Type: Alphabetically sorted list of Mappings.

1.1.3

Added

• Mapping: Introduced check that shows if a Rule is valid or invalid.

• Deployment: Added more default logging settings (Info, Debug, Trace, Warning).

• Deployment - Docker: Introduced health check for containers in order to determine
whether the resource is operating normally.

• Repository: Added option to reindex (update) all implementations that are stored in the
repository.

Improvements

• Communication Channel - MariaDB: Updated driver to version 2.6.2.

Bug Fixes

• Information Model: Fixed renaming of complex variable MemberType to make sure all
dependent nodes are updated to the new name.

• Communication Channel: Fixed duplication of Communication Channels when clicking
on "save".

• Device Type: Fixed several UI issues when clicking on "apply" and "save".

1.1.2

Added

• Manager UI: Added group filter for all artifacts.

• Communication Channel - MQTT: Buffering of messages when MQTT Client is not con-
nected.

Improvements

• Communication Channel - SQL Database: Simplified configuration.

Bug Fixes

• Communication Channel - MQTT: Added ID to the MQTT persistence folder to avoid mul-
tiple clients conflicts.

• Instance: Prohibit Instance from stopping in case another Thread is running in a Channel
Implementation.

1.1.1

Added

• Added Port and IP of the SMARTUNIFIER Manager to the application.conf file.

Improvements

• Communication Channel: Introduce default configuration for Channels.

Bug Fixes

What has changed in 1.1.x 253

SMARTUNIFIER User Manual, Release 1.10.0

• Instance: Ensure that multiple used Communication Channels have only one configura-
tion.

• Device Type: Fixed long loading time when accessing Rules in the Mapping.

1.1.0

Added

• Mapping: Allow the synchronous execution of commands.

Improvements

• Communication Channel - File Consumer: Improved logging and formatting of parsed
files.

Bug Fixes

• Information Model: Fixed icon of model node "Array".

• Communication Channel - SQL Database: Fixed reconnect when connection to the
database is lost.

What has changed in 1.0.x

1.0.1

Added

• Instance: Added schema validation for configuration values in Instances.

Improvements

• Manager UI: Updated to Angular 9 - making use of several performance increasing fea-
tures.

• Communication Channel - OPCUA: Allow configuration of subscription attributes.

Bug Fixes

• Communication Channel: Removed null values from the configuration.

1.0.0

Added

• Added Device Type feature. Enables the possibility to group similar integration scenarios
and the creation of multiple Instances based on a Device Type.

• Deployment - Docker: Added Docker deployment of Instances.

Improvements

• Communication Channel: Sort list of Channel Types alphabetically.

Bug Fixes

• Information Model: Removed simple data types when creating a new Event/Command.

• Mapping: Introduced check that evaluates if a Rule name already exists.

What has changed in 1.0.x 254

	About SMARTUNIFIER
	What is SMARTUNIFIER
	What does SMARTUNIFIER do
	Important Use Cases with SMARTUNIFIER
	Anything-To-Anywhere IT Interface
	Reusable Interfaces and Interface Models
	Integrate Legacy Equipment
	Implement Fab Communication Scenario
	Provide Base for Remote Maintenance and Health Monitoring
	Migrate to Industry 4.0
	Allow Unlimited Scalability
	Enable Internet of Things

	Getting Started

	Installation
	Overview
	SMARTUNIFIER Setup
	Planning the Installation
	Minimum System Requirements (Manager)
	Minimum System Requirements (1 Communication Instance)
	Production Deployment Example
	Test Environment Deployment Example

	Windows
	Install SMARTUNIFIER Manager (Archived Package)
	Install SMARTUNIFIER Manager as a Service
	Apache Procrun
	NSSM

	Linux
	Mac OS
	Docker
	Requirements
	Start Up

	Product Information and Activation
	Product Information
	Product Activation
	Online Activation
	Offline Activation
	Update License

	Credentials Management
	Master Password and Administrator Account
	Setting default credentials

	Enabling HTTPS
	External Version Control
	Gitea
	Local

	External Database

	How to integrate with SMARTUNIFIER
	Information Models
	What are Information Models
	Contextualization
	How to create a new Information Model
	Node Types
	Basics
	Naming Restrictions
	Available Node Types
	Variables
	What are Variables
	Data Types
	How to create a Variable

	Properties
	What are Properties
	Data Types
	How to create a Property

	Events
	What are Events
	Data Types
	How to create an Event

	Commands
	What are Commands
	Data Types
	How to create a Command

	Arrays
	What are Arrays
	Data Types
	How to create an Array

	Lists
	What are Lists
	Data Types
	How to create a List

	Data Types
	Predefined Types
	Custom Types

	Structures Required by Channels
	Importing Data Structures
	Shortcuts

	Communication Channels
	What are Channels
	How to create a new Channel
	Channel Types and Configuration
	File-based
	File Reader
	Characteristics
	Information Model Requirements
	CSV
	JSON
	XML
	Configuration

	File Tailer
	Characteristics
	Information Model Requirements
	CSV
	Configuration

	File Writer
	Characteristics
	Information Model Requirements
	CSV
	JSON
	XML
	Configuration

	Databases
	SQL Database
	Characteristics - SQL Database
	How to configure the SQL-Database

	InfluxDB v1
	Information Model Requirements
	Writing
	Reading
	Configuration
	Description of configuration properties
	Writing / Event Configuration
	Tags
	Fields
	Time
	Arrays
	Reading / Command Configuration

	InfluxDB v2
	Characteristics - InfluxDB v2
	How to configure InfluxDB v2

	InMemory
	Characteristics - InMemory
	Information Model Requirements
	How to configure InMemory

	Protocols
	MQTT
	Characteristics - MQTT
	Configuration - MQTT Channel

	Modbus
	Characteristics - Modbus
	Configuration - Modbus

	OPC-UA
	Characteristics - OPC-UA
	Configuration - OPC-UA Client
	Configuration - OPC-UA Server

	REST
	Characteristics - REST
	Configuration - REST Server
	General REST Server channel configuration:
	Webapp configuration
	SSL configuration
	Java Certificate Keystore configuration
	Windows Certificate Management configuration
	Variable and Complex Variable configuration
	Command configuration
	Command configuration details
	Configuration - REST Client

	SECS/GEM
	Characteristics - SECS/GEM
	Configuration - SECS/GEM Client

	Email
	Characteristics - Email
	Configuration - Email

	AWS SiteWise IoT
	Characteristics - AWS IoT SiteWise
	Configuration - AWS IoT SiteWise

	File Formats / Layers
	CSV
	CSV to Model

	JSON
	JSON to Model

	XML
	String to XML
	Pretty Print
	XML to Model

	General Configurations
	Framework Configuration
	Event Logging

	Mappings
	What are Mappings
	How to create a new Mapping
	How to create Rules
	Graphical
	Single Rule
	Trigger Types
	Tree Member
	Fixed Rate Scheduler
	Fixed Delay Scheduler
	Timeout Scheduler
	Actions
	Simple Assignment
	Complex Assignment
	Actions with Conditions

	Multi Rule
	Implicit Type Conversion

	Code-based Rules
	Basics
	Rule construct
	Compiling
	Logging

	Trigger Types
	Tree Member
	Schedulers
	Fixed Rate Scheduler
	Fixed Delay Scheduler
	Timeout Scheduler

	Target-to-Source Mapping
	Node Types Sharing the Same Custom Data Type
	Node Types with different Custom Data Type
	Variables to Events
	Event to Variables
	Event to Commands
	Properties to Variables
	Mapping including Lists

	SMARTUNIFIER Code Constructs
	Converters
	Math Operators
	String Operators
	Helpers
	Time conversions
	Loops (foreach)
	Conditions (If - statements)
	Exception Handling (Try/Catch)
	Breaking out of Rules

	Device Types
	What are Device Types
	How to create a new Device Type

	Communication Instances
	What are Instances
	How to create a new Instance

	Configuration Component Management
	Naming Convention
	Naming Examples
	Information Models & Communication Channels
	Mappings
	Device Types
	Communication Instances

	Group Filter
	Validation
	Component Version Control
	How to release configuration components

	Operations
	Add
	Edit
	Apply
	Exit Editing
	Save
	Save and Close
	Search
	Sort
	Reload
	Import
	Export
	Clone
	Delete
	Bulk Action

	Deployment
	Deployment Types
	Local and Agent Deployment

	How to Deploy, Run and Operate a Deployed Instance
	How to Deploy an Instance
	How to Run an Instance
	How to Stop an Instance
	How to Delete a Deployment of an Instance
	How to Un-deploy an Instance
	How to Edit a Deployment of an Instance
	How to Redeploy a Deployment of an Instance

	How to monitor Communication Instances
	Log Viewer
	Accessing the Log Viewer
	Log Levels
	Structure of a Log Entry
	Log Viewer Features

	Dashboard
	How to access the Dashboard
	Dashboard's Data

	Additional Options
	Encryption of Communication Instances
	Protect Communication Instances
	VM Arguments

	Notifications
	How to access Notifications
	How to manage Notifications

	Administration
	Active Directory Integration (ADI)
	AD Group Mapping

	Alert Channels
	How to access
	Add an Email Channel
	Edit Alert Channels
	Delete Alert Channels

	Alerts Configuration
	How to access
	Add Alerts
	Edit Alerts
	Delete Alerts

	Backup and Restore
	How to access
	Backup
	Restore
	Manager Backup

	Channel Types Manager
	How to access
	About Layers
	How to create a new Channel Type

	Configuration Components Validation
	How to access
	How to Validate Artifacts

	Credential Management
	How to access
	Add Credentials
	Add Token
	Edit Credentials
	Delete Credentials
	Using Credential Manager when configuring the Communication Channels

	Docker Java Image Manager
	How to access
	Add a New Docker Java Image
	Edit a Docker Java Image
	Delete a Docker Java Image

	Deployment Endpoints
	What are Deployment Endpoints
	How to access
	Deployment Endpoints Types
	Local
	Agent
	Installation as a Windows Service
	Installation as a Java Process
	Creating a Deployment Endpoint

	Deployment Endpoints States
	Deployment Endpoints Operations

	Environment Variables
	How to access
	Adding an Environment Variable
	Using Environment Variables

	Extensions
	How to install extensions
	OpcUa Model Import
	Create a new Information Model (OPCUA)
	OpcUa Nodeset XML Import
	OpcUa Direct Import

	Update an existing Information Model (OPCUA)
	OpcUa Nodeset XML Import (Update)
	OpcUa Direct Import (Update)

	JSON Model Import
	Create a new Information Model (JSON)
	Update an existing Information Model (JSON)

	AWS IoT SiteWise Model Export
	How to access
	How to export Information to AWS IoT SiteWise
	Prerequisite
	Configuration

	Logging Configurations
	Accessing the Feature
	Add a New Logging Configuration
	Edit a Logging Configuration
	Delete a Logging Configuration

	User Management
	About User Management
	User Roles and Permissions
	How to access
	Add a new user
	Edit a user
	Delete a user

	Getting Help
	Troubleshooting
	Communication Instances
	SMARTUNIFIER Manager

	FAQ
	Glossary
	What has changed in 1.9.x
	1.9.8
	1.9.7
	1.9.6
	1.9.5
	1.9.4
	1.9.3
	1.9.2
	1.9.1
	1.9.0

	What has changed in 1.8.x
	What has changed in 1.7.x
	1.7.0

	What has changed in 1.6.x
	1.6.0

	What has changed in 1.5.x
	What has changed in 1.4.x
	1.4.0

	What has changed in 1.3.x
	1.3.0

	What has changed in 1.2.x
	1.2.0

	What has changed in 1.1.x
	1.1.6
	1.1.5
	1.1.4
	1.1.3
	1.1.2
	1.1.1
	1.1.0

	What has changed in 1.0.x
	1.0.1
	1.0.0

